Положения центра тяжести некоторых фигур. Определение центра тяжести плоских фигур Как определить координаты центра тяжести плоской фигуры

Нарисуйте схему системы и отметьте на ней центр тяжести. Если найденный центр тяжести находится вне системы объектов, вы получили неверный ответ. Возможно, вы измерили расстояния от разных точек отсчета. Повторите измерения.

  • Например, если на качелях сидят дети, центр тяжести будет где-то между детьми, а не справа или слева от качелей. Также центр тяжести никогда не совпадет с точкой, где сидит ребенок.
  • Эти рассуждения верны в двумерном пространстве. Нарисуйте квадрат, в котором поместятся все объекты системы. Центр тяжести должен находиться внутри этого квадрата.

Проверьте математические вычисления, если вы получили маленький результат. Если точка отсчета находится на одном конце системы, маленький результат помещает центр тяжести возле конца системы. Возможно, это правильный ответ, но в подавляющем большинстве случаев такой результат указывает на ошибку. Когда вы вычисляли моменты, вы перемножали соответствующие веса и расстояния? Если вместо умножения вы сложили веса и расстояния, вы получите гораздо меньший результат.

Исправьте ошибку, если вы нашли несколько центров тяжести. Каждая система имеет только один центр тяжести. Если вы нашли несколько центров тяжести, скорее всего, вы не сложили все моменты. Центр тяжести равен отношению «суммарного» момента к «суммарному» весу. Не нужно делить «каждый» момент на «каждый» вес: так вы найдете положение каждого объекта.

  • Проверьте точку отсчета, если ответ отличается на некоторое целое значение. В нашем примере ответ равен 3,4 м. Допустим, вы получили ответ 0,4 м или 1,4 м, или другое число, оканчивающееся на «,4». Это потому, что в качестве точки отсчета вы выбрали не левый конец доски, а точку, которая расположена правее на целую величину. На самом деле, ваш ответ верен, независимо от того, какую точку отсчета вы выбрали! Просто запомните: точка отсчета всегда находится в положении x = 0. Вот пример:

    • В нашем примере точка отсчета находилась на левом конце доски и мы нашли, что центр тяжести находится на расстоянии 3,4 м от этой точки отсчета.
    • Если в качестве точки отсчета выбрать точку, которая расположена на расстоянии 1 м вправо от левого конца доски, вы получите ответ 2,4 м. То есть центр тяжести находится на расстоянии 2,4 м от новой точки отсчета, которая, в свою очередь, находится на расстоянии 1 м от левого конца доски. Таким образом, центр тяжести находится на расстоянии 2,4 + 1 = 3,4 м от левого конца доски. Получился старый ответ!
    • Примечание: при измерении расстояния помните, что расстояния до «левой» точки отсчета отрицательные, а до «правой» – положительные.
  • Расстояния измеряйте по прямым линиям. Предположим, на качелях два ребенка, но один ребенок намного выше другого, или один ребенок висит под доской, а не сидит на ней. Проигнорируйте такую разницу и измерьте расстояния по прямой линии доски. Измерение расстояний под углами приведет к близким, но не совсем точным результатам.

    • В случае задачи с качелями-доской помните, что центр тяжести находится между правым и левым концами доски. Позже вы научитесь вычислять центр тяжести более сложных двумерных систем.
  • Умение оставаться в равновесии не прилагая к этому усилий очень важно для эффективной медитации, занятий йогой, цигун и так же для танцев живота. Это первое требование, скоторым, сталкиваются новички в этих видах занятий и одна из причин, по которым трудно сделать первые шаги без инструктора. Вопрос подсказывающий о том что человек своего центра тяжести не знает может выглядеть несколько по разному. В цигун, например, человек спросит как быть расслабленным и при этом выполнять движения стоя, начинающая танцовщица восточных танцев не будет понимать как разделить и координировать движения нижних и верхних частей туловища, а так же в обеих случаях люди будут перенапрягаться и часто терять устойчивость. Движения их будут неуверенными, неуклюжими.

    По этому, важно понять как найти свой центр тяжести самому, это требует как мыслительной работы, так и сноровки, но со временем навык переходит на инстинктивный уровень.

    Что нужно сделать чтобы не напрягать мышцы и при этом не пользоваться внешними опорами. Ответ очевиден, нужно перенести опору внутрь. Точнее опереться на условную внутреннюю ось. Где эта ось проходит? Понятие центра тяжести условное, но тем не менее применяется в физике. Там ее принято определять как точку приложения равнодействующей сил тяжести. Равнодействующая сила тяжести это совокупность всех сил тяжести с учетом направления их действия.

    Сложновато пока? Запаситесь терпением.

    То есть, мы ведь ищем точку в своем теле которая позволит нам не падать, не борясь при этом сознательно с земным притяжением. Это значит, что сила тяжести земли должна быть направленна так, чтобы она сходилась с остальными действующими силами где-то в центре нашего тела.

    Такое направление сил создает условную ось в самом центре нашего тела, вертикальную поверхности это и есть вертикаль центра тяжести. Та часть тела которой мы упираемся в землю является нашей площадью опоры (мы упираемся в землю ступнями) В месте где эта вертикаль упирается в поверхность на которой мы стоим, то есть упираемся в землю, это точка центра тяжести внутри площади опоры. Если вертикаль сместиться из этого места, мы равновесие потеряем и упадем. Чем больше сама площадь опоры, тем нам легче оставаться близко к ее центру, и потому мы все инстинктивно будем делать широкий шаг стоя на не устойчивой поверхности. То есть площадь опоры это не только сами ступни, но еще и пространство между ними.

    Еще важно знать что ширина площади опоры влияет сильнее чем длина. В случае человека, это значит что у нас больше шансов упасть на бок чем назад и уж тем более вперед. По этому при беге нам тяжелее удерживать равновесие, то же самое можно сказать о каблуках. А вот в широкой устойчивой обуви, устоять наоборот легче, даже легче чем совсем уж босяком. Однако упомянутые в начале виды активности предполагают очень мягкую, легкую обувь или ее полное отсутствие. По этому, помогать себе обувью мы не сможем.

    Значит, очень важно найти центральную точку вертикальной линии на своей ступне. Обычно она располагается не в центре ступни, как некоторые автоматически предполагают, а ближе к пятке, где то на пол пути от центра ступни, к пятке.
    Но это еще не все.

    Кроме вертикальной линии центра тяжести есть еще горизонтальная, а так же отдельная для конечностей.
    Горизонтальная линия у женщин и мужчин проходит немного по разному.

    Впереди у женщин она проходит ниже, а у мужчин выше. У мужчин она проходит где-то на 4-5 пальцев ниже пупка, а у женщин на 10, примерно. Сзади женская линия проходит почти укопчика, а мужская выше него примерно на пять пальцев. Кроме того, для устойчивости в момент медитации важно обратить внимание на отвесную линию центра тяжести колена. Онарасположена немного выше кости (голени), но на два или три пальца ниже хряща.

    Во время медитаций, как и во время танца живота, расставлять широко ступни не очень хорошо, максимальная ширина, обычно соответствует ширине плеч.

    По этому, нужно немного помочь себе коленями попытавшись выстроить вертикальную ось как можно прямее. Станьте перед зеркалом, найдите на себе все описанные точки. Ногипоставьте на ширине плеч. Расслабьте мышцы ног и тела. Затем, выпрямите спину, не напрягая тело, расслабьте ноги немного согнув колени. Представьте себе три вертикальных линии, каждая из которых проходит в соответствующей точке в задней части туловища, в передней его части и в районе колен. Попытайтесь расположить точки так, чтобы передняя ось туловища была примерно на полпути меж задней и коленной осью. При этом колени не следует загибать так, чтобы они заходили за носок, они должны быть лишь немного согнуты и хорошо расслаблены. Желательно над центром тяжести внутри площади опоры, который мы нашли на ступне. Руки при этом можно свободно расположить по богам либо положить ладони на бедра.

    Как вы будете знать, что нашли свой центр тяжести?


    Вы будете ощущать легкое покачивание, но при этом точно будете знать, что не упадете.

    Конспект урока по физике 7 класс

    Тема: Определение центра тяжести

    Учитель физики МОУ Аргаяшская СОШ №2

    Хидиятулина З.А.

    Лабораторная работа:

    «Определение центра тяжести плоской пластины»

    Цель : нахождение центра тяжести плоской пластины.

    Теоретическая часть:

    Центр тяжести есть у всех тел. Центром тяжести тела называется точка, относительно которой суммарный момент сил тяжести, действующих на тело, равен нулю. Например, если подвесить предмет за его центр тяжести, то он останется в покое. То есть, его положение в пространстве не изменится (он не перевернётся вверх ногами или на бок). Почему одни тела опрокидываются, а другие — нет? Если из центра тяжести тела провести линию, перпендикулярную полу, то в случае, когда линия выходит за границы опоры тела, тело упадёт. Чем больше площадь опоры, чем ближе расположен центр тяжести тела к центральной точке площади опоры и центральной линии центра тяжести, тем более устойчивым будет положение тела. Например, центр тяжести знаменитой Пизанской башни расположен всего в двух метрах от середины её опоры. А падение случится лишь тогда, когда это отклонение составит около 14 метров. Центр тяжести тела человека находится примерно на 20,23 сантиметра ниже пупка. Воображаемая линия, проведённая отвесно из центра тяжести, проходит ровно между ступнями. У куклы-неваляшки секрет заключается также в центре тяжести тела. Её устойчивость объясняется тем, что центр тяжести у неваляшки находится в самом низу, она фактически стоит на нём. Условием сохранения равновесия тела является прохождение вертикальной оси его общего центра тяжести внутри площади опоры тела. Если вертикаль центра тяжести тела выходит из площади опоры, тело теряет равновесие и падает. Поэтому чем больше площадь опоры, чем ближе расположен центр тяжести тела к центральной точке площади опоры и центральной линии центра тяжести, тем более устойчивым будет положение тела. Площадь опоры при вертикальном положении человека ограничена тем пространством, которое находится под подошвами и между стопами. Центральная точка отвесной линии центра тяжести на стопе находится на 5 см впереди от пяточного бугра. Сагиттальный размер площади опоры всегда преобладает над фронтальным, поэтому и смещение отвесной линии центра тяжести легче происходит вправо и влево, чем назад, а особенно трудно — вперед. В связи с этим устойчивость на поворотах при быстром беге значительно меньше, чем в сагиттальном направлении (вперед или назад). Нога в обуви, особенно с широким каблуком и жесткой подошвой, устойчивее, чем без обуви, так как приобретает большую площадь опоры.

    Практическая часть:

    Цель работы: Используя предложенное оборудование, опытным путём найти положение центра тяжести двух фигур из картона и треугольника.

    Оборудование: Штатив, плотный картон, треугольник из школьного набора, линейка, скотч, нить, карандаш..

    Задание 1: Определите положение центра тяжести плоской фигуры произвольной формы

    С помощью ножниц вырежьте из картона фигуру произвольной формы. Скотчем прикрепите к ней нить в точке А. Подвесьте фигуру за нить к лапке штатива. С помощью линейки и карандаша отметьте на картоне линию вертикали АВ.

    Переместите точку крепления нити в положение С. Повторите описанные действия

    Точка О пересечения линий АВ и CD даёт искомое положение центра тяжести фигуры.

    Задание 2: Пользуясь только линейкой и карандашом, найдите положение центра тяжести плоской фигуры

    С помощью карандаша и линейки разбейте фигуру на два прямоугольника. Построением найдите положения О1 и О2 их центров тяжести. Очевидно, что центр тяжести всей фигуры находится на линии О1О2

    Разбейте фигуру на два прямоугольника другим способом. Построением найдите положения центров тяжести О3 и О4 каждого из них. Соедините точки О3 и О4 линией. Точка пересечения линий О1О2 и О3О4 определяет положение центра тяжести фигуры

    Задание 2: Определите положение центра тяжести треугольника

    С помощью скотча закрепите один из концов нити в вершине треугольника и подвесьте его к лапке штатива. С помощью линейки отметьте направление АВ линии действия силы тяжести (сделайте отметку на противоположной стороне треугольника)

    Повторите аналогичную процедуру, подвесив треугольник за вершину С. На противоположной вершине С стороне треугольника сделайте отметку D .

    С помощью скотча прикрепите к треугольнику отрезки нитей АВ и CD . Точка О их пересечения определяет положение центра тяжести треугольника. В данном случае центр тяжести фигуры находится вне пределов самого тела.

    III . Решение качественных задач

    1.С какой целью цирковые артисты при хождении по канату держат в руках тяжелые шесты?

    2.Почему человек, несущий на спине тяжелый груз, наклоняется вперед?

    3.Почему нельзя встать со стула, если не наклонить корпус вперед?

    4.Почему подъемный кран не опрокидывается в сторону поднимаемого груза? Почему без груза кран не опрокидывается в сторону противовеса?

    5.Почему у автомашин и велосипедов и т.п. тормоза лучше ставить на задние, а не на передние колеса?

    6.Почему, грузовик нагруженный сеном легче переворачивается, чем тот же грузовик нагруженный снегом?

    Учебник для 7 класса

    § 25.3. Как найти центр тяжести тела?

    Напомним, что центром тяжести называют точку приложения силы тяжести. Рассмотрим, как найти на опыте положение центра тяжести плоского тела - скажем, вырезанной из картона фигуры произвольной формы (см. лабораторную работу № 12).

    Подвесим картонную фигуру с помощью булавки или гвоздя так, чтобы она могла свободно вращаться вокруг горизонтальной оси, проходящей через точку О (рис. 25.4, а). Тогда эту фигуру можно рассматривать как рычаг с точкой опоры О.

    Рис. 25.4. Как найти на опыте центр тяжести плоской фигуры

    Когда фигура находится в равновесии, действующие на нее силы уравновешивают друг друга. Это сила тяжести F т, приложенная в центре тяжести фигуры Т, и сила упругости F упр, приложенная в точке О (эта сила приложена со стороны булавки или гвоздя).

    Эти две силы уравновешивают друг друга только при условии, что точки приложения этих сил (точки Т и О) лежат на одной вертикали (см. рис. 25.4, а). В противном случае сила тяжести будет поворачивать фигуру вокруг точки О (рис. 25.4, б).

    Итак, когда фигура находится в равновесии, центр тяжести лежит на одной вертикали с точкой подвеса О. Это и позволяет определить положение центра тяжести фигуры. Проведем с помощью отвеса вертикаль, проходящую через точку подвеса (синяя линия на рис. 25.4, в). На проведенной линии лежит центр тяжести тела. Повторим этот опыт при другом положении точки подвеса. В результате мы получим вторую линию, на которой лежит центр тяжести тела (зеленая линия на рис. 25.4, г). Следовательно, на пересечении этих линий находится искомый центр тяжести тела (красная точка Г на рис. 25.4, г).

    В инженерной практике случается, что возникает необходимость вычислить координаты центра тяжести сложной плоской фигуры, состоящей из простых элементов, для которых расположение центра тяжести известно. Такая задача является частью задачи определения...

    Геометрических характеристик составных поперечных сечений балок и стержней. Часто с подобными вопросами приходится сталкиваться инженерам-конструкторам вырубных штампов при определении координат центра давления, разработчикам схем погрузки различного транспорта при размещении грузов, проектировщикам строительных металлических конструкций при подборе сечений элементов и, конечно, студентам при изучении дисциплин «Теоретическая механика» и «Сопротивление материалов».

    Библиотека элементарных фигур.

    Для симметричных плоских фигур центр тяжести совпадает с центром симметрии. К симметричной группе элементарных объектов относятся: круг, прямоугольник (в том числе квадрат), параллелограмм (в том числе ромб), правильный многоугольник.

    Из десяти фигур, представленных на рисунке выше, только две являются базовыми. То есть, используя треугольники и сектора кругов, можно скомбинировать почти любую фигуру, имеющую практический интерес. Любые произвольные кривые можно, разбив на участки, заменить дугами окружностей.

    Оставшиеся восемь фигур являются самыми распространенными, поэтому они и были включены в эту своеобразную библиотеку. В нашей классификации эти элементы не являются базовыми. Прямоугольник, параллелограмм и трапецию можно составить из двух треугольников. Шестиугольник – это сумма из четырех треугольников. Сегмент круга — это разность сектора круга и треугольника. Кольцевой сектор круга — разность двух секторов. Круг – это сектор круга с углом α=2*π=360˚. Полукруг – это, соответственно, сектор круга с углом α=π=180˚.

    Расчет в Excel координат центра тяжести составной фигуры.

    Передавать и воспринимать информацию, рассматривая пример, всегда легче, чем изучать вопрос на чисто теоретических выкладках. Рассмотрим решение задачи «Как найти центр тяжести?» на примере составной фигуры, изображенной на рисунке, расположенном ниже этого текста.

    Составное сечение представляет собой прямоугольник (с размерами a 1 =80 мм, b 1 =40 мм), к которому слева сверху добавили равнобедренный треугольник (с размером основания a 2 =24 мм и высотой h 2 =42 мм) и из которого справа сверху вырезали полукруг (с центром в точке с координатами x 03 =50 мм и y 03 =40 мм, радиусом r 3 =26 мм).

    В помощь для выполнения расчета привлечем программу MS Excel или программу OOo Calc . Любая из них легко справится с нашей задачей!

    В ячейках с желтой заливкой выполним вспомогательные предварительные расчеты .

    В ячейках со светло-желтой заливкой считаем результаты .

    Синий шрифт – это исходные данные .

    Черный шрифт – это промежуточные результаты расчетов .

    Красный шрифт – это окончательные результаты расчетов .

    Начинаем решение задачи – начинаем поиск координат центра тяжести сечения.

    Исходные данные:

    1. Названия элементарных фигур, образующих составное сечение впишем соответственно

    в ячейку D3: Прямоугольник

    в ячейку E3: Треугольник

    в ячейку F3: Полукруг

    2. Пользуясь представленной в этой статье «Библиотекой элементарных фигур», определим координаты центров тяжести элементов составного сечения xci и yci в мм относительно произвольно выбранных осей 0x и 0y и запишем

    в ячейку D4: =80/2= 40,000

    xc 1 = a 1 /2

    в ячейку D5: =40/2=20,000

    yc 1 = b 1 /2

    в ячейку E4: =24/2=12,000

    xc 2 = a 2 /2

    в ячейку E5: =40+42/3=54,000

    yc 2 = b 1 + h 2 /3

    в ячейку F4: =50=50,000

    xc 3 = x 03

    в ячейку F5: =40-4*26/3/ПИ()=28,965

    yc 3 = y 03 -4* r3 /3/ π

    3. Рассчитаем площади элементов F 1 , F 2 , F 3 в мм2, воспользовавшись вновь формулами из раздела «Библиотека элементарных фигур»

    в ячейке D6: =40*80=3200

    F 1 = a 1 * b 1

    в ячейке E6: =24*42/2=504

    F2 = a2 *h2 /2

    в ячейке F6: =-ПИ()/2*26^2=-1062

    F3 = -π/2*r3 ^2

    Площадь третьего элемента – полукруга – отрицательная потому, что это вырез – пустое место!

    Расчет координат центра тяжести:

    4. Определим общую площадь итоговой фигуры F 0 в мм2

    в объединенной ячейке D8E8F8: =D6+E6+F6=2642

    F 0 = F 1 + F 2 + F 3

    5. Вычислим статические моменты составной фигурыSx и Sy в мм3 относительно выбранных осей 0x и 0y

    в объединенной ячейке D9E9F9: =D5*D6+E5*E6+F5*F6=60459

    Sx = yc1 * F1 + yc2 *F2 + yc3 *F3

    в объединенной ячейке D10E10F10: =D4*D6+E4*E6+F4*F6=80955

    Sy = xc1 * F1 + xc2 *F2 + xc3 *F3

    6. И в завершение рассчитаем координаты центра тяжести составного сеченияXc и Yc в мм в выбранной системе координат 0x — 0y

    в объединенной ячейке D11E11F11: =D10/D8=30,640

    Xc = Sy / F 0

    в объединенной ячейке D12E12F12: =D9/D8=22,883

    Yc =Sx /F0

    Задача решена, расчет в Excel выполнен — найдены координаты центра тяжести сечения, составленного при использовании трех простых элементов!

    Заключение.

    Пример в статье был выбран очень простым для того, чтобы легче было разобраться в методологии расчетов центра тяжести сложного сечения. Метод заключается в том, что любую сложную фигуру следует разбить на простые элементы с известными местами расположения центров тяжести и произвести итоговые вычисления для всего сечения.

    Если сечение составлено из прокатных профилей – уголков и швеллеров, то их нет необходимости разбивать на прямоугольники и квадраты с вырезанными круговыми «π/2»- секторами. Координаты центров тяжести этих профилей приведены в таблицах ГОСТов, то есть и уголок и швеллер будут в ваших расчетах составных сечений базовыми элементарными элементами (о двутаврах, трубах, прутках и шестигранниках говорить нет смысла – это центрально симметричные сечения).

    Расположение осей координат на положение центра тяжести фигуры, конечно, не влияет! Поэтому выбирайте систему координат, упрощающую вам расчеты. Если, например, я развернул бы в нашем примере систему координат на 45˚ по часовой стрелке, то вычисление координат центров тяжести прямоугольника, треугольника и полукруга превратилось бы в еще один отдельный и громоздкий этап расчетов, который «в уме» не выполнишь.

    Представленный ниже расчетный файл Excel в данном случае программой не является. Скорее – это набросок калькулятора, алгоритм, шаблон по которому следует в каждом конкретном случае составлять свою последовательность формул для ячеек с яркой желтой заливкой .

    Итак, как найти центр тяжести любого сечения вы теперь знаете! Полный расчет всех геометрических характеристик произвольных сложных составных сечений будет рассмотрен в одной из ближайших статей в рубрике « ». Следите за новостями на блоге.

    Для получения информации о выходе новых статей и для скачивания рабочих файлов программ прошу вас подписаться на анонсы в окне, расположенном в конце статьи или в окне вверху страницы.

    После ввода адреса своей электронной почты и нажатия на кнопку «Получать анонсы статей» НЕ ЗАБЫВАЙТЕ ПОДТВЕРЖДАТЬ ПОДПИСКУ кликом по ссылке в письме, которое тут же придет к вам на указанную почту (иногда - в папку « Спам» )!

    Несколько слов о бокале, монете и двух вилках, которые изображены на «значке-иллюстрации» в самом начале статьи. Многим из вас, безусловно, знаком этот «трюк», вызывающий восхищенные взгляды детей и непосвященных взрослых. Тема этой статьи – центр тяжести. Именно он и точка опоры, играя с нашим сознанием и опытом, попросту дурачат наш разум!

    Центр тяжести системы «вилки+монета» всегда располагается на фиксированном расстоянии по вертикали вниз от края монеты, который в свою очередь является точкой опоры. Это положение устойчивого равновесия! Если покачать вилки, то сразу становится очевидным, что система стремится занять свое прежнее устойчивое положение! Представьте маятник – точка закрепления (=точка опоры монеты на кромку бокала), стержень-ось маятника (=в нашем случае ось виртуальная, так как масса двух вилок разведена в разные стороны пространства) и груз внизу оси (=центр тяжести всей системы «вилки+монета»). Если начать отклонять маятник от вертикали в любую сторону (вперед, назад, налево, направо), то он неизбежно под действием силы тяжести будет возвращаться в исходное устойчивое состояние равновесия (это же самое происходит и с нашими вилками и монетой)!

    Кто не понял, но хочет понять – разберитесь самостоятельно. Это ведь очень интересно «доходить» самому! Добавлю, что этот же принцип использования устойчивого равновесия реализован и в игрушке ванька–встань-ка. Только центр тяжести у этой игрушки расположен выше точки опоры, но ниже центра полусферы опорной поверхности.

    Всегда рад вашим комментариям, уважаемые читатели!!!

    Прошу, УВАЖАЯ труд автора, скачивать файл ПОСЛЕ ПОДПИСКИ на анонсы статей.

    Loading...Loading...