Влияние лазерного излучения на организм человека на данный момент изучено не полностью, но многие уверены в его негативном воздействии на всё живое. Лазерное излучение зарождается согласно принципу создания света и предполагает использование атомов, но с другим набором физических процессов. Именно по этой причине при лазерном излучении можно проследить воздействие внешнего электромагнитного поля.
Сфера применения
Лазерное излучение является узконаправленным вынужденным потоком энергии непрерывного или импульсного типа. В первом случае присутствует поток энергии одной мощности, а во втором – уровень мощности периодически достигает определенных пиковых значений. Образованию такой энергии помогает квантовый генератор, представленный лазером. Потоки энергии в этом случае являются электромагнитными волнами, которые относительно друг друга распространяются только параллельно. Благодаря такой особенности происходит создание минимального угла светового рассеивания и определенной точной направленности.
Источники лазерного излучения, основанные на его свойствах, достаточно широко применяются в самых разных областях человеческой жизнедеятельности, включая:
- науку – исследования и эксперименты, опыты и открытия;
- военно-оборонную промышленность;
- космическую навигацию;
- производственную сферу;
- техническую сферу;
- локальную термическую обработку – сварку и пайку, резку и гравировку;
- бытовое использование в виде лазерных датчиков считывания штрихкода, устройств считывания компакт-дисков, а также указок;
- лазерное напыление, заметно повышающее износостойкость металлов;
- создание современных голограмм;
- совершенствование различных оптических устройств;
- химическую промышленность – анализ и запуск реакций.
Особенно важным является использование устройств подобного типа в сфере современных медицинских технологий.
Лазер в медицине
С точки зрения современной медицины лазерное излучение является своеобразным и очень своевременным прорывом в области лечения пациентов, которые нуждаются в оперативном вмешательстве. Лазер активно применяется при производстве качественного хирургического инструментария.
К неоспоримым преимуществам хирургического лечения относится использование лазерного высокоточного скальпеля, позволяющего выполнять бескровные разрезы мягких тканей. Такой результат обеспечивается практически мгновенной спайкой капилляров и мелких сосудов. Во время применения лазерного инструмента хирург способен полностью видеть операционное поле. Лазерным потоком энергии ткани рассекаются на определенном расстоянии, при этом отсутствует контакт инструмента с сосудами и внутренними органами.
Важный приоритет применения современного хирургического инструмента представлен обеспечением абсолютной максимальной стерильности. Благодаря строгой направленности лучей все операции происходят с минимальными показателями травматизации, при этом стандартный реабилитационный период прошедших операцию пациентов становится значительно короче и намного быстрее возвращается полноценная трудоспособность.
Отличительная особенность применения во время операции лазерного скальпеля сегодня представлена безболезненностью в послеоперационный период. Очень быстрое развитие современных лазерных технологий способствовало значительному расширению возможностей его применения. Относительно недавно были обнаружены и доказаны с научной точки зрения свойства лазерного излучения оказывать положительное влияние на состояние кожных покровов, благодаря чему устройства подобного типа стали активно применяться в дерматологии и косметологии.
Области медицинского применения
Медицина является на сегодняшний день далеко не единственной, но очень перспективной сферой применения современного лазерного оборудования:
- процесс эпиляции с разрушениями волосяных луковиц и эффективным удалением волос;
- лечение выраженной угревой сыпи;
- эффективное удаление родимых и пигментных пятен;
- шлифование кожи;
- терапия бактериального поражения эпидермиса с обеззараживанием и уничтожением патогенной микрофлоры;
- предупреждение распространения инфекции разного генеза.
Самой первой отраслью, в которой стало активно использоваться лазерное оборудование и его излучение, является офтальмология. Направления микрохирургии глаза, в которых находит широкое применение лазерная технология, представлены:
- лазерной коагуляцией в виде использования термических свойств при лечении сосудистых глазных заболеваний, сопровождающихся поражением сосудов сетчатки и роговицы;
- фотодеструкцией в виде рассечения тканей на пиковой мощности лазерного оборудования при лечении и рассечении вторичной катаракты;
- фотоиспарением в виде длительного теплового воздействия при наличии воспалительных процессов глазного нерва, а также при конъюнктивите;
- фотоабляцией в виде постепенного удаления тканей при лечении дистрофических изменений глазной роговицы, устранении ее помутнения, при операционном лечении глаукомы;
- лазерной стимуляцией с противовоспалительным и рассасывающим воздействием, заметно улучшающим глазную трофику, а также при лечении склеритов, экссудации внутри глазной камеры и гемофтальмов.
Лазерное облучение достаточно широко используется в терапии онкологических заболеваний кожи. Наибольшую эффективность показывает современное лазерное оборудование при удалении меланобластомы. Данный метод также может применяться при лечении рака пищевода или опухолях прямой кишки на 1-2 стадиях. Следует отметить, что в условиях слишком глубокого расположения опухоли и множественных метастазах лазер практически совсем не эффективен.
Опасность излучения лазера
На данный момент относительно хорошо изучено негативное воздействие лазерного излучения на живые организмы. Облучение бывает рассеянным, прямым и отраженным. Отрицательное воздействие вызывает способность лазерных устройств излучать световые и тепловые потоки. Степень поражения напрямую зависит сразу от нескольких факторов, включая:
- длину электромагнитной волны;
- участок локализации негативного воздействия;
- поглотительные способности тканей.
Сильнее всего подвержены отрицательному влиянию энергии лазера глаза. Именно сетчатка глаза отличается чрезвычайной чувствительностью и может получать ожоги разной степени выраженности.
Последствиями такого влияния становятся частичная потеря пациентом зрения, а также полная и необратимая слепота. Источники негативного излучения чаще всего бывают представлены разными инфракрасными приборами-излучателями видимого света.
Симптоматика поражения сетчатки, радужки, хрусталика и роговицы лазером:
- болезненность и спазмы в глазах;
- выраженная отечность век;
- кровоизлияния разной степени;
- помутнение глазного хрусталика.
Облучение средней степени интенсивности может стать причиной термических ожогов кожных покровов. На месте контакта лазерного оборудования и кожных покровов в этом случае заметно резкое повышение температуры, сопровождающееся вскипанием и испарением межтканевой и внутриклеточной жидкости. При этом кожа приобретает характерное красное окрашивание. Под действием давления происходят разрывы тканевых структур и появляется отек, который может дополнятся внутрикожными кровоизлияниями. Впоследствии на местах ожога наблюдаются некротические участки, а в самых тяжелых случаях происходит заметное обугливание кожных покровов.
Признаки негативного воздействия
Отличительным признаком лазерного ожога являются четкие границы на пораженных участках кожи с пузырьками, которые образуются непосредственно в слоях эпидермиса, а не под ним. Рассеянное поражение кожи характеризуется практически мгновенной потерей чувствительности, а эритема проявляется спустя несколько дней, после воздействия облучения.
Основные признаки представлены:
- перепадами артериального давления;
- замедленным сердцебиением;
- повышенной потливостью;
- необъяснимой общей утомляемостью;
- чрезмерной раздражительностью.
Особенностью лазерного излучения инфракрасного спектра является проникновение глубоко внутрь, через ткани, с поражением внутренних органов. Характерное отличие глубокого ожога представлено чередованием здоровых и поврежденных тканей. Первоначально при лучевом воздействии люди не испытывают ощутимых болей, а к наиболее уязвимым органам относится печень. В целом, воздействие лазерного излучения на человеческих организм провоцирует функциональные расстройства в центральной нервной системе и сердечно-сосудистой деятельности.
Защита от негативного воздействия и меры предосторожности
Наибольший риск облучения возникает у людей, деятельность которых напрямую связана с использованием квантовых генераторов. Согласно принятым на сегодняшний день основным санитарным нормам, опасны для человека 2, 3 и 4 классы излучения.
Технические защитные методы представлены:
- грамотной планировкой промышленных помещений;
- правильной внутренней отделкой без зеркального отражения;
- соответствующим размещением лазерных установок;
- ограждением зон возможного облучения;
- соблюдением требований по обслуживанию и эксплуатации лазерного оборудования.
Индивидуальная защита включает в себя специальные очки и спецодежду, безопасные экраны и кожухи, а также призмы и линзы для отражения лучей. Сотрудники таких предприятий должны регулярно направляться на медицинские профилактические осмотры.
В бытовых условиях необходимо соблюдать осторожность и обязательно придерживаться определенных правил эксплуатации:
- не направлять источники излучения на светоотражающие поверхности;
- не направлять лазерный свет в глаза;
- хранить лазерные гаджеты в недоступном для маленьких детей месте.
Наиболее опасны для человеческого организма лазеры, имеющие прямое излучение, большую интенсивность, узкую и ограниченную направленность луча, а также слишком высокую плотность излучения.
Лазеры и излучение от них используется человечеством уже довольно давно. Помимо медицинской среды эксплуатации подобные устройства получили широкое применение в технических отраслях промышленности. Взяли их на вооружение специалисты из области декорирования и создания спецэффектов. Теперь ни одно масштабное шоу не обходится без сцены с лазерными лучами.
Чуть позже такое излучение перестало принимать только промышленные формы и стало встречаться в быту. Но не все знают, как отражается влияние лазерного излучения на организм человека при регулярном и периодическом облучении.
Что такое лазерное излучение?
Лазерное излучение рождается по принципу создания света. В обоих случаях используются атомы. Но в ситуации с лазерами присутствуют другие физические процессы, и прослеживается воздействие электромагнитного поля внешнего типа. Из-за этого ученые называют излучение от лазеров вынужденным или стимулированным.
В терминологии физики лазерным излучением называют электромагнитные волны, которые распространяются почти параллельно по отношению друг к другу. Из-за этого лазерный луч отличается острой направленностью. Кроме этого такой луч обладает небольшим углом рассеивания совместно с огромной интенсивностью влияния на поверхность, которую облучают.
Главным отличием лазера от стандартной лампы накаливания считается спектральный диапазон. Лампа числится рукотворным источником света, который излучает электромагнитные волны. Спектр освещения у классической лампы составляет почти 360 градусов.
Воздействие лазерного облучения на все живое
Вопреки стереотипам, влияние лазерного излучения на организм человека не всегда подразумевает что-то негативное. Из-за повсеместного использования квантовых генераторов в разных жизненных сферах ученые решили задействовать возможности узконаправленного луча в медицине.
В ходе многочисленных исследований стало понятно, что лазерное облучение имеет несколько характерных свойств:
- Повреждения от лазера могут производиться не только в процессе прямого воздействия на организм из аппарата. Нанести ущерб может даже рассеянное облучение или отраженные лучи.
- Между степенью поражения и основными параметрами электромагнитной волны прослеживается прямая связь. Также на тяжесть поражения влияет расположение облученной ткани.
- Негативный эффект при поглощении тканями энергии может выражаться в тепловом или световом воздействии.
Но вот последовательность при поражении лазером всегда предусматривает идентичный биологический принцип:
- повышение температуры, которое сопровождается ожогом;
- закипание межтканевой и клеточной жидкостей;
- образование пара, создающего весомое давление;
- взрыв и ударная волна, разрушающие все ткани поблизости.
Зачастую неправильно использованный лазерный излучатель несет, в первую очередь, угрозу для кожных покровов. Если влияние было особенно сильным, то кожа будет выглядеть отечной, со следами многочисленных кровоизлияний. Также на теле будут встречаться большие участки омертвевших клеток.
Задевает такое облучение и внутренние ткани. Но при масштабных внутренних поражениях рассеянное воздействие лучами не столько сильно, как прямое или отраженное зеркально. Подобные повреждения будут гарантировать патологические изменения в функционировании различных систем организма.
Кожный покров, который страдает больше всего, является защитой внутренних органов каждого человека. Из-за этого он берет большую часть негативного воздействия на себя. В зависимости от разных степеней поражения на коже будут проявляться покраснения или прослеживаться некроз.
Исследователи пришли к выводу, что люди с темной кожей менее восприимчивы к глубинным поражениям из-за лазерного облучения.
Схематически все ожоги можно разделить на четыре степени вне зависимости от пигментации:
- I степень. Подразумевает стандартные ожоги эпидермиса.
- II степень. Включает ожоги дермы, что выражается в образовании характерных пузырей поверхностного слоя кожи.
- III степень. Основывается на глубинных ожогах дермы.
- IV степень. Самая опасная степень, которая отличается деструкцией всей толщины кожи. Поражение охватывает подкожную клетчатку, а также соседствующие к ней слои.
Лазерные поражения глаз
На втором месте в негласном рейтинге возможного отрицательного влияния лазера на организм человека находятся поражения органов зрения. Короткие лазерные импульсы способны за небольшой промежуток времени вывести из строя:
- сетчатку,
- роговицу,
- радужную оболочку,
- хрусталик.
Причин для подобного воздействия существует несколько. Основными из них выступают:
- Невозможность вовремя среагировать. Из-за того что длительность импульса составляет не более 0,1 секунды, человек не успевает моргнуть. Из-за этого глаз остается незащищенным.
- Легкая уязвимость. По своим особенностям хрусталик и роговица считаются сами по себе уязвимыми органами.
- Оптическая глазная система. Из-за фокусировки лазерного излучения на глазном дне, точка облучения при попадании на сосуд сетчатки способна закупорить его. Так как там нет болевых рецепторов, то повреждение обнаружить мгновенно не получится. Только после того как выжженная территория становится больше, человек замечает отсутствие части изображения.
Чтобы быстрее сориентироваться при потенциальном поражении, эксперты советуют прислушиваться к таким симптомам:
- спазмы век,
- отек век,
- болевые ощущения,
- кровоизлияние в сетчатке,
- помутнение.
Опасности добавляет тот факт, то поврежденные лазером клетки сетчатки теряют возможность восстановиться. Так как интенсивность облучения, влияющего на органы зрения ниже, чем идентичный порог для кожи, врачи призывают к осторожности.
Следует остерегаться инфракрасных лазеров разного типа, а также приборов, которые генерируют излучение с мощностью свыше 5 мвт. Распространяется правило на технику, выдающую лучи видимого спектра.
Взаимосвязь между лазерной волной и ее сферой применения
Каждая из областей применения лазерного излучения ориентируется на строго определенный показатель длины волны.
Данный показатель напрямую зависит от природы. Вернее, от электронного строения рабочего тела. Это означает, что ответственной за длину волны выступает среда, где происходит генерация ее излучения.
В мире имеются разные виды твердотельных и газовых лазеров. Задействованные лучи должны принадлежать к одному из трех наиболее распространенных типов:
- видимый,
- ультрафиолетовый,
- инфракрасный.
При этом рабочий диапазон облучения может колебаться от 180 нм до 30 мнм.
Особенности влияния лазера на человеческий организм базируются на длине волны. Так, например, человек быстрее реагирует на зеленый лазер, чем на красный. Последний не отличается безопасностью для всего живого. Причина кроется в том, что наше зрение почти в 30 раз луче воспринимает зеленый, нежели красный цвет.
Как защититься от лазера?
В большинстве случаев защита от лазерного излучения нужна тем людям, чья работа тесно связана с его постоянным использованием. Если предприятие имеет на своем балансе любой тип квантового генератора, то его руководители обязательно производят инструктаж своих сотрудников.
Эксперты разработали отдельную сводку правил поведения и безопасности, которые позволят защитить сотрудника от возможных последствий излучения. Главным правилом выступает наличие средств индивидуальной защиты. Причем подобные средства могут разительно отличаться в зависимости от прогнозируемой степени опасности.
Всего в международной классификации предусмотрено разделение на четыре класса опасности. Соответствующую маркировку должен указать изготовитель. Только первый класс считается относительно безопасным даже для органов зрения.
Ко второму классу принадлежат излучения прямого типа, которые поражают органы глаз. Также к представленной категории причислено зеркальное отражение.
Гораздо опаснее излучение третьего класса. Его прямое воздействие угрожает глазам. Не менее опасно отраженное излучение диффузного типа на расстоянии 10 см от поверхности. Кожные поражения будут происходить не только при прямом воздействии, но и при зеркально отраженном.
При четвертом классе страдает и кожа, и глаза при различных форматах воздействия.
К коллективным защитным мерам на производстве причисляют:
- специальные кожухи,
- защитные экраны,
- световоды,
- инновационные методы слежения,
- сигнализации,
- блокировки.
Из относительно примитивных, но действенных способов выделяют ограждение зоны, где производится облучение. Это позволит защитить работников от случайного облучения по неосторожности.
Также на особо опасных предприятиях обязательно использовать средства индивидуальной защиты сотрудников. Они подразумевают под собой особый комплект спецодежды. Не обойтись во время работы и без ношения очков, предусматривающих защитное покрытие.
Лазерные гаджеты и их излучение
Многие не подозревают о том, насколько серьезными могут быть последствия бесконтрольной эксплуатации самодельных устройств с лазерным принципом. Касается это самодельных конструкций вроде лазерных:
- светильников,
- указок,
- фонариков.
Особенно это касается старшеклассников, которые стремятся провести ряд опытов, не имея представления о правилах безопасности при их конструировании.
Использовать лазеры домашнего производства в помещениях, где присутствуют люди, недопустимо. Также нельзя направлять лучи на стекла, металлические пряжки и прочие предметы, которые могут давать отблески.
Даже если луч отличается небольшой интенсивностью, он может привести к трагедии. Если навести лазер на глаза водителя во время активного движения, то он может ослепнуть и не справиться с управлением.
Ни при каких обстоятельствах нельзя заглядывать в объектив лазерного источника излучения. Отдельно стоит учитывать то, что очки для работы с лазером должны быть рассчитаны на ту длину волны, которую будут генерировать выбранные аппараты.
Чтобы не допустить серьезной трагедии доктора просят прислушаться к этим рекомендациям и следовать им всегда.
Лазерное излучение – это узконаправленные вынужденные потоки энергии. Оно бывает непрерывным, одной мощности или импульсным, где мощность периодически достигает определенного пика. Энергия образуется с помощью квантового генератора – лазера. Поток энергии представляет собой электромагнитные волны, которые распространяются параллельно относительно друг друга. Это создает минимальный угол рассеивания света и определенную точную направленность.
Сфера применения лазерного излучения
Свойства лазерного излучения позволяет применять его в различных сферах жизнедеятельности человека:
- наука – исследования, опыты, эксперименты, открытия;
- военно-оборонная промышленность и космическая навигация;
- производственная и техническая сфера;
- локальная термическая обработка – сварка, резка, гравировка, паяние;
- бытовое применение – лазерные датчики для считывания штрихкода, устройства для считывания компактных дисков, указки;
- лазерное напыление для повышения износостойкости металла;
- создание голограмм;
- усовершенствование оптических устройств;
- химическая промышленность – запуск и анализ реакций.
Применение лазера в медицине
Лазерное излучение в медицине – это прорыв в лечении пациентов, требующих оперативного вмешательства. Лазер применяют для производства хирургического инструментария.
Неоспоримые преимущества хирургического лечения лазерным скальпелем очевидны. Он позволяет сделать бескровный разрез мягких тканей. Это обеспечивается мгновенной спайкой мелких сосудов и капилляров. Во время использования такого инструмента хирург полностью видит все операционное поле. Лазерный поток энергии рассекает на определенном расстоянии, не контактируя с внутренними органами и сосудами.
Важным приоритетом является обеспечение абсолютной стерильности. Строгая направленность лучей позволяет делать операции с минимальной травматизацией. Реабилитационный период пациентов значительно сокращается. Быстрее возвращается трудоспособность человека. Отличительной особенностью применения лазерного скальпеля является безболезненность в послеоперационный период.
Развитие лазерных технологий позволило расширить возможности его применения. Были обнаружены свойства лазерного излучения положительно влиять на состояние кожи. Поэтому его активно применяют в косметологии и дерматологии.
В зависимости от своего типа, кожа человека по-разному поглощает лучи и реагирует на них. Аппараты лазерного излучения могут создать нужную длину волны в каждом конкретном случае.
Применение:
- эпиляция – разрушение волосяной луковицы и удаления волос;
- лечение угревой сыпи;
- удаление пигментных и родимых пятен;
- шлифовка кожи;
- применение при бактериальном поражении эпидермиса (обеззараживает, убивает патогенную микрофлору), излучение лазера предупреждает распространение инфекции.
Офтальмология – это первая отрасль, которая применила лазерное излучение. Направления в применении лазеров в микрохирургии глаза:
- лазеркоагуляция – использование термических свойств для лечения сосудистых заболеваний глаза (поражение сосудов роговицы, сетчатки);
- фотодеструкция – рассечение тканей на пике мощности лазера (вторичная катаракта и ее рассечение);
- фотоиспарение – длительное воздействие тепла, применяют при воспалительных процессах глазного нерва, при конъюнктивите;
- фотоабляция – постепенное удаление тканей, используют для лечения дистрофических изменений роговицы, устраняет ее помутнение, операционное лечение глаукомы;
- лазерстимуляция – оказывает противовоспалительное, рассасывающее действие, улучшает трофику глаза, применяется для лечения склеритов, экссудации в камере глаза, гемофтальмов.
Лазерное облучение используется при онкологических заболеваниях кожи. Наиболее эффективен лазер для удаления меланобластомы. Иногда метод применяют для лечения рака пищевода или прямой кишки 1-2 стадии. При глубоком расположении опухоли и метастазах лазер не эффективен.
Какую опасность представляет лазер для человека
Влияние лазерного излучения на организм человека может быть негативным. Облучение может быть прямым, рассеянным и отраженным. Негативное воздействие обеспечивается световыми и тепловыми свойствами лучей. Степень поражения зависит от нескольких факторов – длина электромагнитной волны, место локализации воздействия, поглотительная способность тканей.
Наиболее подвержены влиянию лазерной энергии глаза. Сетчатка глаза очень чувствительна, поэтому часто случаются ее ожоги. Последствия – частичная потеря зрения, необратимая слепота. Источник лазерного излучения – инфракрасные приборы-излучатели видимого света.
Симптомы поражения радужки, сетчатки, роговицы, хрусталика лазером:
- болезненные ощущения и спазмы в глазу;
- отек век;
- кровоизлияния;
- помутнение хрусталика.
При облучении средней интенсивности возникают термические ожоги кожи. В месте контакта лазера и кожи резко повышается температура. Происходит вскипание и испарение внутриклеточной и межтканевой жидкости. Кожа становится красной. Под давлением происходит разрыв тканевых структур. На коже появляется отек, в некоторых случаях внутрикожные кровоизлияния. Впоследствии на месте ожога появляются некротические (омертвевшие) участки. В тяжелых случаях обугливание кожи происходит моментально.
Отличительный признак лазерного ожога – четкие границы поражения кожи, а пузыри образуются в эпидермисе, а не под ним.
При рассеянном поражении кожи в месте поражения она становится нечувствительной, а эритема появляется через несколько дней.
Лазерное излучение инфракрасного спектра может проникать глубоко через ткани и поражать внутренние органы. Характерность глубокого ожога – чередование здоровой и поврежденной ткани. Первоначально при воздействии лучей человек не испытывает боли. Наиболее уязвимый орган – печень.
Воздействие излучения на организм в целом вызывает функциональные расстройства центральной нервной системы, сердечно-сосудистой деятельности.
Признаки:
- перепады артериального давления;
- повышенная потливость;
- необъяснимая общая утомляемость;
- раздражительность.
Меры предосторожности и защиты от лазерного излучения
Наиболее риску облучения подвержены люди, деятельность которых связана с применением квантовых генераторов.
В соответствии с санитарными нормами лазерное излучение разделяется на четыре класса опасности. Для организма человека опасность представляет второй, третий, четвертый классы.
Технические методы защиты от лазерного излучения:
- Правильная планировка промышленных помещений, внутренняя отделка должна соответствовать правилам техники безопасности (лазерные лучи не должны зеркально отражаться).
- Соответствующее размещение излучающих установок.
- Ограждение зоны возможного облучения.
- Порядок и соблюдение правил обслуживания и эксплуатации оборудования.
Еще одна защита от лазера – индивидуальная. Она включает такие средства: очки от лазерного излучения, защитные кожухи и экраны, комплект спецодежды (технологические халаты и перчатки), линзы и призмы, отражающие лучи. Все сотрудники регулярно должны проходить профилактические медицинские осмотры.
Использование лазера в быту тоже бывает опасным для здоровья. Неправильная эксплуатация световых указок, лазерных фонариков может нанести непоправимый вред человеку. Защита от лазерного излучения предусматривает простые правила:
- Нельзя направлять источник излучения на стекла и зеркала.
- Категорически запрещено направлять лазер в глаза себе или другому человеку.
- Хранить гаджеты с лазерным излучением необходимо в недоступном для детей месте.
Действие лазера, в зависимости от модификации излучателя, бывает тепловым, энергетическим, фотохимическим и механическим. Наибольшую опасность представляет лазер с прямым излучением, с большой интенсивностью, узкой и ограниченной направленностью луча, высокой плотностью излучения. К опасным факторам, которые способствуют получению облучения, относится высокое производственное напряжение в сети, загрязнение воздуха химическими веществами, интенсивный шум, рентгеновское излучение. Биологические эффекты от лазерного излучения делятся на первичные (местный ожог), и вторичные (неспецифические изменения как ответная реакция всего организма). Следует помнить, что бездумное применение самодельных лазеров, световых указок, светильников, лазерных фонариков может нанести окружающим непоправимый вред.
Само слово «лазер», это аббревиатура от английского "Light Amplification by Stimulated Emission of Radiation", что означает «усиление света с помощью индуцированного излучения».
Отсчет эпохи лазерной медицины начался более полу века назад, когда в 1960 г., Теодор Мэйман впервые использовал в клинике рубиновый лазер.
За рубиновым последовали другие лазеры: 1961 г. – лазер на иттриево-алюминиевом гранате с неодимом (Nd:YAG); 1962 г. – аргоновый; 1964 г. – лазер на диоксиде углерода (СО 2).
В 1965 г. Леон Голдман сообщил об использовании рубинового лазера для удаления татуировок. В дальнейшем, вплоть до 1983 г., предпринимались различные попытки использования неодимового и аргонового лазеров для лечения сосудистых патологий кожи. Но их применение было ограничено высоким риском образования рубцов.
В 1983 г. в журнале Science Рокс Андерсон и Джон Пэрриш опубликовали разработанную ими концепцию селективного фототермолиза (СФТ), что привело к революционным изменениям в лазерной медицине и дерматологии . Данная концепция позволила лучше понять процессы взаимодействия лазерного излучения с тканью. Это, в свою очередь, облегчило разработку и производство лазеров для медицинского применения.
Особенности лазерного излучения
Три свойства, присущие лазерному излучению делают его уникальным:
- Когерентность. Пики и спады волн располагаются параллельно и совпадают по фазе во времени и пространстве.
- Монохромность. Световые волны, излучаемые лазером, имеют одинаковую длину, именно ту, которая предусмотрена используемой в лазере средой.
- Коллимация. Волны в луче света сохраняют параллельность, не расходятся, и луч переносит энергию практически без потерь.
Способы взаимодействия лазерного излучения с кожей
Методы лазерной хирургии применяются для манипуляций на коже намного чаще, чем на любых других тканях. Это объясняется, во-первых, исключительным разнообразием и распространенностью кожной патологии и различных косметических дефектов, а во-вторых, относительной простотой выполнения лазерных процедур, что связано с поверхностным расположением объектов, требующих лечения. В основе взаимодействия лазерного света с тканями лежат оптические свойства тканей и физические свойства лазерного излучения. Распределение света, попавшего на кожу, можно разделить на четыре взаимосвязанных процесса.
Отражение. Около 5-7% света отражаются на уровне рогового слоя.
Поглощение (абсорбция). Описывается законом Бугера - Ламберта - Бера. Поглощение света, проходящего сквозь ткань, зависит от его исходной интенсивности, толщины слоя вещества, через которое проходит свет, длины волны поглощаемого света и коэффициента поглощения. Если свет не поглощается, никакого его воздействия на ткани не происходит. Когда фотон поглощается молекулой-мишенью (хромофором), вся его энергия передается этой молекуле. Важнейшими эндогенными хромофорами являются меланин, гемоглобин, вода и коллаген . К экзогенным хромофорам относятся красители для татуировок, а также частицы грязи, импрегнированные при травме.
Рассеивание. Этот процесс обусловлен главным образом коллагеном дермы. Важность явления рассеивания состоит в том, что оно быстро уменьшает плотность потока энергии, доступной для поглощения хромофором-мишенью, а, следовательно, и клиническое воздействие на ткани. Рассеивание снижается с увеличением длины волны, делая более длинные волны идеальным средством доставки энергии в глубокие кожные структуры.
Проникновение.
Глубина проникновения света в подкожные структуры, как и интенсивность рассеивания, зависит от длины волны. Короткие волны (300-400 нм) интенсивно рассеиваются и не проникают глубже 100 мкм.
А волны большей длины проникают глубже, так как рассеиваются меньше.
Основными физическими параметрами лазера, определяющими воздействие квантовой энергии на ту или иную биологическую мишень, являются длина генерируемой волны и плотность потока энергии и время воздействия.
Длина генерируемой волны. Длина волны излучения лазера сопоставима со спектром поглощения самых важных тканевых хромофоров (рис. 2). При выборе этого параметра обязательно следует учитывать глубину расположения структуры-мишени (хромофора), поскольку рассеивание света в дерме существенно зависит от длины волны (рис. 3). Это означает, что длинные волны поглощаются слабее, чем короткие; соответственно, их проникновение в ткани глубже. Необходимо также учитывать и неоднородность спектрального поглощения тканевых хромофоров:
- Меланин в норме содержится в эпидермисе и волосяных фолликулах. Спектр его поглощения лежит в ультрафиолетовом (до 400 нм) и видимом (400 - 760 нм) диапазонах спектра. Поглощение меланином лазерного излучения постепенно уменьшается по мере увеличения длины волны света. Ослабление поглощения наступает в ближней инфракрасной области спектра от 900 нм.
- Гемоглобин содержится в эритроцитах. Он имеет множество различных пиков поглощения. Максимумы спектра поглощения гемоглобина лежат в области УФ-А (320-400 нм), фиолетовом (400 нм), зеленом (541 нм) и желтом (577 нм) диапазонах.
- Коллаген составляет основу дермы. Спектр поглощения коллагена находится в видимом диапазоне от 400 нм до 760 нм и ближней инфракрасной области спектра от 760 до 2500нм.
- Вода составляет до 70% дермы. Спектр поглощения воды лежит в средней (2500 - 5000 нм) и дальней (5000 - 10064 нм) инфракрасной областях спектра.
Плотность потока энергии. Если длина волны света влияет на глубину, на которой происходит его поглощение тем или иным хромофором, то для непосредственного повреждения структуры-мишени важны величина энергии лазерного излучения и мощность, определяющая скорость поступления этой энергии. Энергия измеряется в джоулях (Дж), мощность – в ваттах (Вт, или Дж/с). На практике эти параметры излучения обычно используются в перерасчете на единицу площади – плотность потока энергии (Дж/см 2) и скорость потока энергии (Вт/см 2), или плотность мощности .
Виды лазерных вмешательств в дерматологии
Все виды лазерных вмешательств в дерматологии могут быть условно подразделены на два типа:
- I тип. Операции, в ходе которых проводят абляцию участка пораженной кожи, включая эпидермис.
- II тип. Операции, нацеленные на избирательное удаление патологических структур без нарушения целостности эпидермиса.
I тип.Абляция.
Этот феномен представляет собой одну из фундаментальных, интенсивно изучаемых, хотя еще и не до конца решенных проблем современной физики.
Термин «абляция» переводится на русский язык как удаление или ампутация. В немедицинской лексике это слово означает размывание или таяние. В лазерной хирургии под абляцией понимают ликвидацию участка живой ткани непосредственно под действием на нее фотонов лазерного излучения. При этом имеется в виду эффект, проявляющийся именно в ходе самой процедуры облучения, в отличие от ситуации (например, при фотодинамической терапии), когда облученный участок ткани после прекращения лазерного воздействия остается на месте, а его постепенная ликвидация наступает позднее в результате серии местных биологических реакций, развивающихся в зоне облучения .
Энергетические характеристики и производительность абляции определяются свойствами облучаемого объекта, характеристиками излучения и параметрами, неразрывно связывающими свойства объекта и лазерного луча, - коэффициентами отражения, поглощения и рассеивания данного вида излучения в данном виде ткани или ее отдельных составляющих. К свойствам облучаемого объекта относятся: соотношение жидкого и плотного компонентов, их химические и физические свойства, характер внутри- и межмолекулярных связей, термическая чувствительность клеток и макромолекул, кровоснабжение ткани и т. д. Характеристиками излучения – это длина волны, режим облучения (непрерывный или импульсный), мощность, энергия в импульсе, суммарная поглощенная энергия и т. д.
Наиболее детально механизм абляции исследован при использовании СО2 лазера (l = 10,6 мкм). Его излучение при плотности мощности ³ 50 кВт/см 2 интенсивно поглощается молекулами тканевой воды. При таких условиях происходит быстрый разогрев воды, а от нее и неводных компонентов ткани. Следствием этого является стремительное (взрывное) испарение тканевой воды (эффект вапоризации) и извержение водяных паров вместе с фрагментами клеточных и тканевых структур за пределы ткани с формированием абляционного кратера. Вместе с перегретым материалом из ткани удаляется и бόльшая часть тепловой энергии. Вдоль стенок кратера остается узкая полоска разогретого расплава, от которого тепло передается на окружающие интактные ткани (рис. 4). При низкой плотности энергии (рис. 5, А) выброс продуктов абляции относительно невелик, поэтому значительная часть тепла от массивного слоя расплава передается в ткань. При более высокой плотности (рис. 5, Б) наблюдается обратная картина. При этом незначительные термические повреждения сопровождаются механической травмой ткани за счет ударной волны. Часть разогретого материала в виде расплава остается вдоль стенок абляционного кратера, причем именно этот слой является резервуаром тепла, передаваемого в ткань за пределы кратера. Толщина этого слоя одинакова по всему контуру кратера. С повышением плотности мощности она уменьшается, а с понижением растет, что сопровождается соответственно уменьшением или увеличением зоны термических повреждений. Таким образом, повышая мощность излучения, мы добиваемся увеличения скорости удаления ткани, снижая при этом глубину термического повреждения .
Область применения СО 2 -лазера очень обширна. В фокусированном режиме он используется для иссечения тканей с одновременной коагуляцией сосудов. В дефокусированном режиме за счет уменьшения плотности мощности производится послойное удаление (вапоризация) патологической ткани. Именно таким способом ликвидируют поверхностные злокачественные и потенциально злокачественные опухоли (базальноклеточная карцинома, актинический хейлит, эритроплазия Кейра), ряд доброкачественных новообразований кожных покровов (ангиофиброма, трихлеммома, сирингома, трихоэпителиома и др.), крупные послеожоговые струпы, воспалительные кожные заболевания (гранулемы, узелковый хондродерматит ушной раковины), кисты, инфекционные поражения кожи (бородавки, рецидивирующие кондиломы, глубокие микозы), сосудистые поражения (пиогенная гранулема, ангиокератома, кольцевидная лимфангиома), образования, обусловливающие косметические дефекты (ринофима, глубокие постугревые рубцы, эпидермальные родимые пятна, лентиго, ксантелазма) и др.
Дефокусированный луч СО 2 -лазера используют и в сугубо косметической процедуре - так называемой лазерной дермабразии, то есть послойном удалении поверхностных слоев кожи с целью омоложения облика пациента . В импульсном режиме с длительностью импульса менее 1 мс за один проход селективно вапоризируется 25-50 мкмткани; при этом образуется тонкая зона резидуального термического некроза в пределах 40-120 мкм. Размеры этой зоны достаточны для временной изоляции дермальных кровеносных и лимфатических сосудов, что в свою очередь позволяет снизить риск формирования рубца.
Обновление кожи после лазерной дермабразии обусловлено несколькими причинами. Абляция уменьшает выраженность морщин и текстурных аномалий за счет поверхностного испарения ткани, тепловой коагуляции клеток в дерме и денатурации экстрацеллюлярных матричных белков. Во время процедуры происходит мгновенная видимая контракция кожи в пределах 20-25% как результат усадки (сжатия) ткани из-за дегидратации и сжатия коллагеновых волокон. Наступление отсроченного, но более продолжительного результата обновления кожи достигается за счет процессов, связанных с реакцией тканей на травму. После воздействия лазером в области сформировавшейся раны развивается асептическое воспаление. Это стимулирует посттравматическое высвобождение факторов роста и инфильтрацию фибробластами. Наступающая реакция автоматически сопровождается всплеском активности, что неизбежно ведет к тому, что фибробласты начинают производить больше коллагена и эластина. В результате вапоризации происходит активация процессов обновления и кинетики пролиферации эпидермальных клеток. В дерме запускаются процессы регенерации коллагена и эластина с последующим их расположением в параллельной конфигурации.
Аналогичные события происходят при использовании импульсных лазеров, излучающих в ближней и средней инфракрасной области спектра (1,54-2,94 мкм):эрбиевого с диодной накачкой (l = 1,54 мкм), тулиевого (l = 1,927 мкм), Ho:YSSG (l = 2,09 мкм), Er:YSSG (l = 2,79 мкм), Er:YAG (l = 2,94 мкм). Для перечисленных лазеров характерны очень высокие коэффициенты поглощения водой. Например, излучение Er:YAG-лазера поглощается водосодержащими тканями в 12-18 раз активнее, чем излучение СО 2 -лазера. Как и в случае СО 2 -лазера, вдоль стенок абляционного кратера в ткани, облученной Er:YAG-лазером, образуется слой расплава. Следует иметь в виду, что при работе на биоткани с этим лазером существенное значение для характера тканевых изменений имеет энергетическая характеристика импульса, в первую очередь его пиковая мощность. Это означает, что даже при минимальной мощности излучения, но более длительном импульсе резко возрастает глубина термонекроза. В таких условиях масса удаленных перегретых продуктов абляции относительно меньше массы оставшихся. Это обусловливает глубокие термические повреждения вокруг абляционного кратера. В то же время при мощном импульсе ситуация иная - минимальные термические повреждения вокруг кратера при высокоэффективной абляции. Правда, в этом случае положительный эффект достигается ценой обширных механических повреждений ткани ударной волной. За один проход эрбиевым лазером происходит абляция ткани на глубину 25-50 мкм с минимальным резидуальным термическим повреждением. Вследствие этого процесс реэпителизации кожи значительно короче, чем после воздействия СО 2 -лазера.
II тип. Селективное воздействие.
К операциям этого типа относятся процедуры, в ходе которых добиваются лазерного повреждения определенных внутридермальных и подкожных образований без нарушения целостности кожного покрова. Эта цель достигается подбором характеристик лазера: длины волны и режима облучения. Они должны обеспечить поглощение лазерного света хромофором (окрашенной структурой-мишенью), что приведет к его разрушению или обесцвечиванию за счет превращения энергии излучения в тепловую (фототермолиз), а в некоторых случаях и в механическую энергию. Мишенью лазерного воздействия могут быть: гемоглобин эритроцитов, находящихся в многочисленных расширенных дермальных сосудах при винных пятнах (PWS); пигмент меланин различных кожных образований; угольные, а также другие, по-разному окрашенные инородные частицы, вводимые под эпидермис при татуировке или попадающие туда в результате иных воздействий.
Идеальным селективным воздействием можно считать такое воздействие, при котором лучи лазера поглощаются только структурами мишени, а за ее пределами поглощение отсутствует. Для достижения такого результата специалисту, выбравшему лазер с соответствующей длиной волны, оставалось бы лишь установить плотность энергии излучения и продолжительность экспозиций (или импульсов), а также интервалов между ними. Эти параметры определяют с учетом (ВТР) для данной мишени - промежутка времени, за который возросшая в момент подачи импульса температура мишени опускается на половину ее прироста по отношению к исходной. Превышение длительности импульса над значением ВТР вызовет нежелательный перегрев ткани вокруг мишени. К такому же эффекту приведет и уменьшение интервала между импульсами. В принципе, все эти условия могут быть смоделированы математически перед операцией, однако сам состав кожи не позволяет в полной мере воспользоваться расчетными данными. Дело в том, что в базальном слое эпидермиса находятся меланоциты и отдельные кратиноциты, которые содержат меланин. Поскольку этот пигмент интенсивно поглощает свет в видимой, а также близких к ней ультрафиолетовой и инфракрасной областях спектра («оптическое окно» меланина находится в пределах от 500 до 1100 нм), любое лазерное излучение в данном диапазоне будет поглощаться меланином. Это может привести к термическому повреждению и гибели соответствующих клеток. Более того, излучение в видимой части спектра поглощается также цитохромами и флавиновыми ферментами (флавопротеидами) как меланинсодержащих клеток, так и всех остальных типов клеток эпидермиса и дермы. Из этого следует, что при лазерном облучении мишени, расположенной под поверхностью кожи, некоторое повреждение эпидермальных клеток становится неизбежным. Поэтому реальная клиническая задача сводится к компромиссному поиску таких режимов лазерного облучения, при которых стало бы возможным достигать максимального поражения мишени при наименьшем повреждении эпидермиса (с расчетом на его последующую регенерацию, главным образом за счет соседних необлученных участков кожи).
Соблюдение всех этих условий применительно к конкретной мишени приведет к ее максимальному повреждению (разогреву или распаду) при минимальном перегреве или механической травме соседних структур.
Так, для облучения патологических сосудов винного пятна (PWS) наиболее рациональным является использование лазера с самой большой длиной волны, соответствующей пикам светопоглощения гемоглобина (l = 540, 577, 585 и 595 нм), при длительности импульсов порядка миллисекунд, поскольку при этом поглощение излучения меланином будет незначительным (положение 1 теории селективного фототермолиза). Относительно большая длина волны эффективно обеспечит глубинный прогрев ткани (положение 2), а сравнительно продолжительный импульс будет соответствовать весьма крупным размерам мишени (сосуды с эритроцитами; положение 3).
Если же целью процедуры является ликвидация частиц татуировки, то помимо подбора длины волны излучения, соответствующей цвету этих частиц, потребуется установить продолжительность импульса, которая значительно меньше, чем в случае винных пятен, чтобы добиться механического разрушения частиц при минимальном термическом повреждении других структур (положение 4).
Разумеется, соблюдение всех этих условий не обеспечивает абсолютную защиту эпидермиса, однако исключает слишком грубое его повреждение, которое привело бы впоследствии к стойкому косметическому дефекту из-за чрезмерного рубцевания.
Реакции ткани на лазерное воздействие
При взаимодействии лазерного света с тканью происходят следующие реакции.
Фотостимуляция. Для фотостимуляции используются низкоинтенсивные терапевтические лазеры. Терапевтический лазер по энергетическим параметрам оказывает действие, не повреждающее биосистему, но в то же время этой энергии достаточно для активации процессов жизнедеятельности организма, например ускорения заживления ран.
Фотодинамическая реакция. В основе принципа – воздействие светом определенной длины волны на фотосенсибилизатор (естественный или искусственно введенный), обеспечивающее цитотоксический эффект на патологическую ткань. В дерматологии фотодинамическое воздействие используется для лечения вульгарных угрей, псориаза, красного плоского лишая, витилиго, пигментной крапивницы и др.
Фототермолиз и фотомеханические реакции- при поглощении излучения происходит преобразование энергии лазерного луча в тепло на том участке кожи, который содержит хромофор. При достаточной мощности лазерного луча это приводит к тепловому разрушению мишени. Селективный фототермолиз можно применить для удаления пороков развития поверхностно расположенных сосудов, некоторых пигментных образований кожи, волос, татуировок.
Литература
- Лазеро- и светолечение. Доувер Дж.С.Москва. Рид Элсивер 2010.С.5-7
- Неворотин А. И. Введение в лазерную хирургию. Учебное пособие. - Спб.: СпецЛит, 2000.
- Неворотин А. И. Лазерная рана в теоретическом и прикладном аспектах. // Лазерная биология и лазерная медицина: практика. Мат. докл. респ. школы-семинара. Часть 2. - Тарту-Пюхяярве: Изд-во Тартуского университета ЭССР, 1991, с. 3-12.
- Anderson R. R., Parish J. A. The optics of human skin. J Invest Dermatol 1981; 77:13-19.
- Anderson R. R., Parrish J. A. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 1983; 220:524-527.
- Goldman L., Blaney D. J., Kindel D. J. et al. Effect of the laser beam on the skin: preliminary report. J Invest Dermatol 1963; 40:121-122.
- Kaminer M. S., Arndt K. A., Dover J. S. et al. Atlas of cosmetic surgery. 2nd ed. - Saunders-Elsevier 2009.
- Margolis R. J., Dover J. S., Polla L. L. et al. Visible action spectrum for melanin-specific selective photothermolysis. Lasers Surg Med 1989; 9:389-397.
Лазеры становятся все более важными инструментами исследования в области медицины, физики, химии, геологии, биологии и техники. При неправильном использовании они могут ослеплять и наносить травмы (в т. ч. ожоги и электротравмы) операторам и другому персоналу, включая случайных посетителей лаборатории, а также нанести значительный ущерб имуществу. Пользователи этих устройств должны в полной мере понимать и применять необходимые меры безопасности при обращении с ними.
Что такое лазер?
Слово «лазер» (англ. LASER, Light Amplification by Stimulated Emission of Radiation) является аббревиатурой, которая расшифровывается как «усиление света индуцированным излучением». Частота излучения, генерируемого лазером, находится в пределах или вблизи видимой части электромагнитного спектра. Энергия усиливается до состояния чрезвычайно высокой интенсивности с помощью процесса, который носит название «излучение лазерное индуцированное».
Термин «радиация» часто понимается неправильно, потому что его также используют при описании В данном контексте оно означает передачу энергии. Энергия переносится из одного места в другое посредством проводимости, конвекции и излучения.
Существует множество различных типов лазеров, работающих в разных средах. В качестве рабочей среды используются газы (например, аргон или смесь гелия с неоном), твердые кристаллы (например, рубин) или жидкие красители. Когда энергия подается в рабочую среду, она переходит в возбуждённое состояние и высвобождает энергию в виде частиц света (фотонов).
Пара зеркал на обоих концах герметизированной трубки либо отражает, либо передает свет в виде концентрированного потока, называемого лазерным лучом. Каждая рабочая среда производит луч уникальной длины волны и цвета.
Цвет света лазера, как правило, выражается длиной волны. Он является неионизирующим и включает ультрафиолетовую (100-400 нм), видимую (400-700 нм) и инфракрасную (700 нм - 1 мм) часть спектра.
Электромагнитный спектр
Каждая электромагнитная волна обладает уникальной частотой и длиной, связанной с этим параметром. Подобно тому, как красный свет имеет свою собственную частоту и длину волны, так и все остальные цвета - оранжевый, желтый, зеленый и синий - обладают уникальными частотами и длинами волн. Люди способны воспринимать эти электромагнитные волны, но не в состоянии видеть остальную часть спектра.
Наибольшую частоту имеют и ультрафиолет. Инфракрасное, микроволновая радиация и радиоволны занимают нижние частоты спектра. Видимый свет находится в очень узком диапазоне между ними.
воздействие на человека
Лазер производит интенсивный направленный пучок света. Если его направить, отразить или сфокусировать на объект, луч частично поглотится, повышая температуру поверхности и внутренней части объекта, что может вызвать изменение или деформацию материала. Эти качества, которые нашли применение в лазерной хирургии и обработке материалов, могут быть опасны для тканей человека.
Кроме радиации, оказывающей тепловое воздействие на ткани, опасно лазерное излучение, производящее фотохимический эффект. Его условием является достаточно короткая т. е. ультрафиолетовая или синяя части спектра. Современные устройства производят лазерное излучение, воздействие на человека которого сведено к минимуму. Энергии маломощных лазеров недостаточно для нанесения вреда, и опасности они не представляют.
Ткани человека чувствительны к воздействию энергии, и при определенных обстоятельствах электромагнитное излучение, лазерное в том числе, может привести к повреждению глаз и кожи. Были проведены исследования пороговых уровней травмирующей радиации.
Опасность для глаз
Человеческий глаз более подвержен травмам, чем кожа. Роговица (прозрачная внешняя передняя поверхность глаза), в отличие от дермы, не имеет внешнего слоя омертвевших клеток, защищающих от воздействия окружающей среды. Лазерное и поглощается роговицей глаза, что может нанести ей вред. Травма сопровождается отёком эпителия и эрозией, а при тяжёлых повреждениях - помутнением передней камеры.
Хрусталик глаза также может быть подвержен травмам, когда на него воздействует различное лазерное излучение - инфракрасное и ультрафиолетовое.
Наибольшую опасность, однако, представляет воздействие лазера на сетчатку глаза в видимой части оптического спектра - от 400 нм (фиолетовый) до 1400 нм (ближний инфракрасный). В пределах этой области спектра коллимированные лучи фокусируются на очень маленьких участках сетчатки. Наиболее неблагоприятный вариант воздействия происходит, когда глаз смотрит вдаль и в него попадает прямой или отражённый луч. В этом случае его концентрация на сетчатке достигает 100 000 крат.
Таким образом, видимый пучок мощностью 10 мВт/см 2 воздействует на сетчатку глаза с мощностью 1000 Вт/см 2 . Этого более чем достаточно, чтобы вызвать повреждение. Если глаз не смотрит вдаль, или если луч отражается от диффузной, не зеркальной поверхности, к травмам ведёт значительно более мощное излучение. Лазерное воздействие на кожу лишено эффекта фокусировки, поэтому она гораздо меньше подвержена травмам при этих длинах волн.
Рентгеновские лучи
Некоторые высоковольтные системы с напряжением более 15 кВ могут генерировать рентгеновские лучи значительной мощности: лазерное излучение, источники которого - мощные с электронной накачкой, а также плазменные системы и источники ионов. Эти устройства должны быть проверены на в том числе для обеспечения надлежащего экранирования.
Классификация
В зависимости от мощности или энергии пучка и длины волны излучения, лазеры делятся на несколько классов. Классификация основана на потенциальной способности устройства вызывать немедленную травму глаз, кожи, воспламенение при прямом воздействии луча или при отражении от диффузных отражающих поверхностей. Все коммерческие лазеры подлежат идентификации с помощью нанесённых на них меток. Если устройство было изготовлено дома или иным образом не помечено, следует получить консультацию по соответствующей его классификации и маркировке. Лазеры различают по мощности, длине волны и длительности экспозиции.
Безопасные устройства
Устройства первого класса генерируют низкоинтенсивное лазерное излучение. Оно не может достичь опасного уровня, поэтому источники освобождаются от большинства мер контроля или других форм наблюдения. Пример: лазерные принтеры и проигрыватели компакт-дисков.
Условно безопасные устройства
Лазеры второго класса излучают в видимой части спектра. Это лазерное излучение, источники которого вызывают у человека нормальную реакцию неприятия слишком яркого света (мигательный рефлекс). При воздействии луча человеческий глаз моргает через 0,25 с, что обеспечивает достаточную защиту. Однако излучение лазерное в видимом диапазоне способно повредить глаз при постоянном воздействии. Примеры: лазерные указатели, геодезические лазеры.
Лазеры 2а-класса являются устройствами специального назначения с выходной мощностью менее 1 мВт. Эти приборы вызывают повреждение только при непосредственном воздействии в течение более 1000 с за 8-часовой рабочий день. Пример: устройства считывания штрих-кода.
Опасные лазеры
К классу 3а относят устройства, которые не травмируют при кратковременном воздействии на незащищённый глаз. Могут представлять опасность при использовании фокусирующей оптики, например, телескопов, микроскопов или биноклей. Примеры: гелий-неоновый лазер мощностью 1-5 мВт, некоторые лазерные указатели и строительные уровни.
Луч лазера класса 3b может привести к травме при непосредственном воздействии или при его зеркальном отражении. Пример: гелий-неоновый лазер мощностью 5-500 мВт, многие исследовательские и терапевтические лазеры.
Класс 4 включает устройства с уровнями мощности более 500 мВт. Они опасны для глаз, кожи, а также пожароопасны. Воздействие пучка, его зеркального или диффузного отражений может стать причиной глазных и кожных травм. Должны быть предприняты все меры безопасности. Пример: Nd:YAG-лазеры, дисплеи, хирургия, металлорезание.
Лазерное излучение: защита
Каждая лаборатория должна обеспечить соответствующую защиту лиц, работающих с лазерами. Окна помещений, через которые может проходить излучение устройств 2, 3 или 4 класса с нанесением вреда на неконтролируемых участках, должны быть покрыты или иным образом защищены во время работы такого прибора. Для обеспечения максимальной защиты глаз рекомендуется следующее.
- Пучок необходимо заключить в неотражающую негорючую защитную оболочку, чтобы свести к минимуму риск случайного воздействия или пожара. Для выравнивания луча использовать люминесцентные экраны или вторичные визиры; избегать прямого воздействия на глаза.
- Для процедуры выравнивания луча использовать наименьшую мощность. По возможности для предварительных процедур выравнивания использовать устройства низкого класса. Избегать присутствия лишних отражающих объектов в зоне работы лазера.
- Ограничить прохождение луча в опасной зоне в нерабочее время, используя заслонки и другие преграды. Не использовать стены комнаты для выравнивания луча лазеров класса 3b и 4.
- Использовать неотражающие инструменты. Некоторый инвентарь, не отражающий видимый свет, становится зеркальным в невидимой области спектра.
- Не носить отражающие ювелирные изделия. Металлические украшения также повышают опасность поражения электрическим током.
Защитные очки
При работе с лазерами 4 класса с открытой опасной зоной или при риске отражения следует пользоваться защитными очками. Тип их зависит от вида излучения. Очки необходимо выбирать для защиты от отражений, особенно диффузных, а также для обеспечения защиты до уровня, когда естественный защитный рефлекс может предотвратить травмы глаз. Такие оптические приборы сохранят некоторую видимость луча, предотвратят ожоги кожи, снизят возможность других несчастных случаев.
Факторы, которые следует учитывать при выборе защитных очков:
- длина волны или область спектра излучения;
- оптическая плотность при определенной длине волны;
- максимальная освещённость (Вт/см 2) или мощность пучка (Вт);
- тип лазерной системы;
- режим мощности - импульсное лазерное излучение или непрерывный режим;
- возможности отражения - зеркального и диффузного;
- поле зрения;
- наличие корректирующих линз или достаточного размера, позволяющего ношение очков для коррекции зрения;
- комфорт;
- наличие вентиляционных отверстий, предотвращающих запотевание;
- влияние на цветовое зрение;
- ударопрочность;
- возможность выполнения необходимых задач.
Так как защитные очки подвержены повреждениям и износу, программа безопасности лаборатории должна включать периодические проверки этих защитных элементов.