Географическое распределение испаряемости и испарения. Лекция: Испарение и испаряемость

Важнейшим компонентом водного баланса является испарение. Проблема получения климатически достоверной информации об испарении стоит гораздо острее, чем в отношении осадков. Подавляющая часть известных данных базируется на расчетных методах. Расчеты более-менее надежны над водной поверхностью, где можно принять испарение за испаряемость и вычислить это значение. Над сушей такой подход невозможен, поэтому на редкой сети производится непосредственное измерение испарения, однако пространственное климатическое обобщение этих данных затруднительно (Кислов А.В., 2011).

На рис. 3.5 и в табл. 3.3 приводятся рассчитанные годовые суммы испарения с подстилающей поверхности, из которых следует, что испарение с океанов значительно превышает испарение с суши. На большей части акватории Мирового океана в средних и низких широтах испарение изменяется от 600 до 2500 мм, а максимумы достигают 3000 мм. В полярных водах при наличии льдов испарение сравнительно невелико. На суше годовые суммы испарения составляют от 100–200 мм в полярных и пустынных районах (в Антарктиде еще меньше) до 800–1000 мм во влажных тропических и субтропических областях (юг Азии, бассейн р. Конго, юго-восток США, восточное побережье Австралии, острова Индонезии, Мадагаскар). Максимальные значения на суше – несколько больше 1000 мм (Хромов С.П., Петросянц М.А., 2001).

Рис. 3.5. Распределение средних годовых значений (мм/год) испарения с подстилающей поверхности (Атлас теплового баланса земного шара, 1963)

Таблица 3.3 . Годовые значения испарения (мм) для разных поясов Северного полушария (по данным Будыко М.И., 1980)

Таким образом, в среднем по широтным зонам в Северном полушарии наибольшие годовые значения испарения наблюдаются в тропиках. По мере продвижения от тропиков к полюсам испарение уменьшается. В экваториальной зоне и в высоких широтах средние годовые значения испарения над сушей и морем примерно одинаковые, но в тропиках и умеренных широтах испарение с поверхности моря больше, чем с поверхности суши. Аналогичное распределение испарения и в Южном полушарии, но в целом по полушарию испарение выше и составляет примерно 1250 мм, так, площадь, занятая океаном, в том полушарии больше (для Северного полушария среднее годовое значение испарения около 770 мм) (Климатология, 1989).

Для получения физически аргументированных представлений об особенностях пространственной картины испарения можно принять во внимание то, что турбулентный поток водяного пара определяется вертикальным градиентом влаги в приводном слое и развитостью турбулентного режима, который может быть параметрически охарактеризован величиной модуля вектора скорости ветра и критерием устойчивости стратификации атмосферы. С этой точки зрения становится понятно, например, почему вдоль стрежней теплых течений (Гольфстрима, Куросио, Бразильского, Восточно-Австралийского) испарение велико. Особенно оно увеличивается в зимнее время, когда на морские акватории попадает (из-за преобладания западного переноса) сухой холодный воздух, сформировавшийся во внетропических континентальных центрах высокого давления. При этом возрастает градиент удельной влажности и резко усиливается турбулентность из-за формирующейся неустойчивой температурной стратификации.

Рассмотренные положения позволяют объяснить существование больших осадков ВЗК с точки зрения баланса количества осадков (r) и величины испарения (Е) (рис. 3.6). Над обширными частями океанов воздушные массы пассатов накапливают влагу (здесь Е r > 0) и «выливают» эту воду в ВЗК (где Е r < 0). Облачные системы полярно-фронтовых циклонов формируются в тропическом влажном воздухе, так что переносимый ими в высокие широты и на континенты водяной пар (туда, где Е r < 0) также собран с тропических и субтропических акваторий Мирового океана.

Баланс влаги «испарение минус осадки» позволяет понять основные географические закономерности формирования речного стока – наиболее полноводны те реки, бассейны которых находятся на территориях, где Е - r< 0. Характерными примерами являются реки Амазонка, Конго, Ганг, Брахмапутра и др. Причем полноводны не только названные великие реки, простирающиеся на тысячи километров, но и сравнительно небольшие по протяженности реки крупных островов, например Индонезии, круглогодично питаемые обильными осадками, количество которых существенно превышает испарение.

Для океана атмосферный баланс влаги «испарение минус осадки» представляет собой вертикальный поток «пресной воды». Он определяет в главных чертах пространственную неоднородность поля солености вод. В Тихом океане осадки превышают испарение, а в Атлантическом (и Индийском океане) испарение больше осадков и больше соленость приповерхностных слоев, причем ее пространственное распределение следует за распределением баланса «осадки минус испарение». Однако не все особенности поля солености определяются исключительно этим балансом. Так, распреснение вод локально возрастает вблизи устьев крупных рек (Амазонка, Конго, Ганг). В полярных широтах помимо названных факторов активную роль в процессе формирования поля солености играют пресные воды, образующиеся при таянии снежного и ледяного покрова (Кислов А.В., 2011).

Рис. 3.6. Атмосферный баланс влаги «испарение минус осадки» над океанами (см/год): 1 – изолинии >0 ; 2 – изолинии <0 (Кислов А.В., 2011)

Гл а в а 8

Вода в атмосфере

Испарение и испаряемость


Вода, входящая в состав воздуха, находится в нем в газообразном, жидком и твердом состоянии. Она попадает в воздух за счет испарения с поверхности водоемов и суши (физическое испарение), а также вследствие транспирации (испарение растениями), кото­рая является физико-биологическим процес­сом. Приземные слои воздуха, обогащенные

Рис. 37. Средние годовые значения испарения с подсти­лающей поверхности (мм/год)

водяным паром, становятся легче и поднима­ются вверх. Вследствие адиабатического по­нижения температуры поднимающегося возду­ха содержание водяного пара в нем, в конце концов, становится предельно возможным. Происходит конденсация, или сублимация, во­дяного пара, образуются облака, а из них - осадки, выпадающие на землю. Так соверша­ется круговорот воды. Водяной пар в атмо­сфере обновляется в среднем примерно каждые восемь суток. Важным звеном круговорота во­ды является испарение, которое заключается в переходе воды из жидкого или твердого аг­регатного состояния (возгонка) в газообраз­ное и поступлении невидимого водяного пара в воздух.

Испарение показывает фактическое коли­чество испаряющейся воды в отличие от ис-

1 Влажный воздух немного легче сухого, так как он менее плотный. Например, насыщенный водяным паром воздух при температуре 0° и давлении 1000 мб менее плотен, чем сухой, - на 3 г/м (0,25%). При более вы­сокой температуре и соответственно большем влагосодержании эта разница увеличивается.


паряемости - максимально возможного ис­парения, не ограниченного запасами влаги. По­этому над океанами испарение практически равно испаряемости. Интенсивностью или скоростью испарения называется количест­во воды в граммах, испаряющееся с 1 см по­верхности в секунду (V=r/см2 в с). Измере­ние и вычисление испарения - трудная за­дача. Поэтому на практике испарение учитывают косвенным способом - по вели­чине слоя воды (в мм), испарившейся за бо­лее длительные промежутки времени (сутки месяц). Слой воды в 1 мм с площади 1 м равен массе воды 1 кг. Интенсивность испа­рения с водной поверхности зависит от ряда факторов: 1) от температуры испаряющей по­верхности: чем она выше, тем больше ско­рость движения молекул и большее их число отрывается от поверхности и попадает в воз­дух; 2) от ветра: чем больше его скорость, тем интенсивнее испарение, так как ветер от­носит насыщенный влагой воздух и приносит более сухой; 3) от дефицита влажности: чем она больше, тем интенсивнее испарение; 4) от давления: чем оно больше, тем меньше испарение, так как молекулам воды труднее оторваться от испаряющей поверхности.

Рассматривая испарение с поверхности поч­вы, надо учитывать такие ее физические свой­ства, как цвет (темные почвы из-за большо­го нагрева испаряют больше воды), механи­ческий состав (у суглинистых почв выше, чем у супесчаных, водоподъемная способность и интенсивность испарения), влажность (чем почва суше, тем слабее испарение). Важны и такие показатели, как уровень грунтовых вод (чем он выше, тем больше испарение), рель­еф (на возвышенных местах воздух подвиж­нее, чем в низинах), характер поверхности (шероховатая по сравнению с гладкой обла­дает большей испаряющей площадью), расти­тельность, которая уменьшает испарение с почвы. Однако растения сами испаряют мно­го воды, забирая ее из почвы с помощью кор­невой системы. Поэтому в целом влияние рас­тительности многообразное и сложное.

На испарение затрачивается тепло, в ре­зультате чего температура испаряющей по­верхности понижается. Это имеет большое значение для растений, особенно в экватори­ально-тропических широтах, где испарение уменьшает их перегрев. Южное океаническое полушарие холоднее северного отчасти по этой же причине.

Суточный и годовой ход испарения тесно связан с температурой воздуха. Поэтому мак­симум испарения в течение суток наблюдает-


ся около полудня и хорошо выражен лишь в теплое время года. В годовом ходе испарения максимум приходится на самый теплый месяц, минимум - на холодный. В географическом распределении испарения и испаряемости, зависящих прежде всего от температуры и запасов воды, наблюдается зональность (рис. 37).

В экваториальной зоне испарение и испа­ряемость над океаном и сушей почти одина­ковы и составляют около 1000 мм в год.

В тропических широтах их среднегодовые значения максимальные. Но наибольшие значения испарения - до 3000 мм отмеча­ются над теплыми течениями, а испаряемость 3000 мм - в тропических пустынях Сахары, Аравии, Австралии при фактическом испаре­нии около 100 мм.

В умеренных широтах над материками Евразии и Северной Америки испарение меньше и постепенно уменьшается с юга на север из-за снижения температур и в глубь материков ввиду уменьшения влагозапасов в почве (в пустынях до 100 мм). Испаряемость в пустынях, наоборот, максимальная - до 1500 мм/год.

В полярных широтах испарение и испаря­емость малы - 100 - 200 мм и одинаковы над морскими льдами Арктики и над ледника­ми суши.

Вода, входящая в состав воздуха, находится в нем в газообразном, жидком и твердом состоянии. Она попадает в воздух за счет испарения с поверхности водоемов и суши (физическое испарение), а также вследствие транспирации (испарение растениями), которая является физико-биологическим процессом. Приземные слои воздуха, обогащенные водяным паром, становятся легче и поднимаются вверх. Вследствие адиабатического понижения температуры поднимающегося воздуха содержание водяного пара в нем, в конце концов, становится предельно возможным. Происходит конденсация, или сублимация, водяного пара, образуются облака, а из них – осадки, выпадающие на землю. Так совершается круговорот воды. Водяной пар в атмосфере обновляется в среднем примерно каждые восемь суток. Важным звеном круговорота воды является испарение, которое заключается в переходе воды из жидкого или твердого агрегатного состояния (возгонка) в газообразное и поступлении невидимого водяного пара в воздух.

Рис. 37. Средние годовые значения испарения с подстилающей поверхности (мм/год)

Влажный воздух немного легче сухого, так как он менее плотный. Например, насыщенный водяным паром воздух при температуре 0° и давлении 1000 мб менее плотен, чем сухой, – на 3 г/м (0,25%). При более высокой температуре и соответственно большем влагосодержании эта разница увеличивается.

Испарение показывает фактическое количество испаряющейся воды в отличие от испаряемости – максимально возможного испарения, не ограниченного запасами влаги. Поэтому над океанами испарение практически равно испаряемости. Интенсивностью или скоростью испарения называется количество воды в граммах, испаряющееся с 1 см 2 поверхности в секунду (V = г/см 2 в с). Измерение и вычисление испарения – трудная задача. Поэтому на практике испарение учитывают косвенным способом – по величине слоя воды (в мм), испарившейся за более длительные промежутки времени (сутки месяц). Слой воды в 1 мм с площади 1 м равен массе воды 1 кг. Интенсивность испарения с водной поверхности зависит от ряда факторов: 1) от температуры испаряющей поверхности: чем она выше, тем больше скорость движения молекул и большее их число отрывается от поверхности и попадает в воздух; 2) от ветра: чем больше его скорость, тем интенсивнее испарение, так как ветер относит насыщенный влагой воздух и приносит более сухой; 3) от дефицита влажности: чем она больше, тем интенсивнее испарение; 4) от давления: чем оно больше, тем меньше испарение, так как молекулам воды труднее оторваться от испаряющей поверхности.

Рассматривая испарение с поверхности почвы, надо учитывать такие ее физические свойства, как цвет (темные почвы из-за большого нагрева испаряют больше воды), механический состав (у суглинистых почв выше, чем у супесчаных, водоподъемная способность и интенсивность испарения), влажность (чем почва суше, тем слабее испарение). Важны и такие показатели, как уровень грунтовых вод (чем он выше, тем больше испарение), рельеф (на возвышенных местах воздух подвижнее, чем в низинах), характер поверхности (шероховатая по сравнению с гладкой обладает большей испаряющей площадью), растительность, которая уменьшает испарение с почвы. Однако растения сами испаряют много воды, забирая ее из почвы с помощью корневой системы. Поэтому в целом влияние растительности многообразное и сложное.

На испарение затрачивается тепло, в результате чего температура испаряющей поверхности понижается. Это имеет большое значение для растений, особенно в экваториально-тропических широтах, где испарение уменьшает их перегрев. Южное океаническое полушарие холоднее северного отчасти по этой же причине.

Суточный и годовой ход испарения тесно связан с температурой воздуха. Поэтому максимум испарения в течение суток наблюдается около полудня и хорошо выражен лишь в теплое время года. В годовом ходе испарения максимум приходится на самый теплый месяц, минимум – на холодный. В географическом распределении испарения и испаряемости, зависящих прежде всего от температуры и запасов воды, наблюдается зональность (рис. 37).

В экваториальной зоне испарение и испаряемость над океаном и сушей почти одинаковы и составляют около 1000 мм в год.

В тропических широтах их среднегодовые значения максимальные. Но наибольшие значения испарения – до 3000 мм отмечаются над теплыми течениями, а испаряемость 3000 мм – в тропических пустынях Сахары, Аравии, Австралии при фактическом испарении около 100 мм.

В умеренных широтах над материками Евразии и Северной Америки испарение меньше и постепенно уменьшается с юга на север из-за снижения температур и в глубь материков ввиду уменьшения влагозапасов в почве (в пустынях до 100 мм). Испаряемость в пустынях, наоборот, максимальная – до 1500 мм/год.

В полярных широтах испарение и испаряемость малы – 100–200 мм и одинаковы над морскими льдами Арктики и над ледниками суши.

Вода в атмосфере. Свойства воды

Вода на земле есть повсюду. Океаны, моря, реки, озера и др. водоемы занимают 71% земной поверхности. Вода, которая содержится в атмосфере, – единственное вещество, которое может находиться там во всех трех фазовых состояниях (твердое, жидкое и газообразное) одновременно.

Важнейшие для метеорологии физические свойства воды представлены в таблице 6.

Таблица 6 – Физические характеристики воды (Русин, 2008)

Свойства воды, важные для климатообразования:

· вода является поглотителем лучистой энергии;

· обладает одним из самых высоких значений удельной теплоемкости среди других веществ на земле (это сказывается на разности в нагревании суши и моря, проникновение радиации и тепла вглубь почвы и водоёмов);

· идеальный (почти) растворитель;

· дипольное (биполярное) строение молекул воды обеспечивает высокую температуру кипения (без водородных связей температура кипения равнялась бы -80°С).

· расширение при замерзании в отличие от других веществ, которые сжимаются. (максимальная плотность воды наблюдается при температуре +4°С; плотность льда меньше плотности воды: дистиллированной на 1/9, морской на 1/7; более легкий лед плавает по поверхности воды).

Благодаря процессам испарения и конденсации в атмосфере непрерывно происходит круговорот воды, в котором участвует значительная масса ее. В среднем многолетний круговорот воды характеризуется следующими данными (таблица 1):

Таблица 1 – Характеристики круговорота воды на Земле (Матвеев, 1976)

Осадки, мм/год Испарение, мм/год Сток, мм/год
Материки
Мировой океан
Земной шар

С поверхности океанов (361 млн. км 2) в течение года испаряется слой воды толщиной 1127 мм (или 4,07·10 17 кг воды), с поверхности материков – 446 мм (или 0,66·10 17 кг воды). Толщина слоя осадков, выпадающих за год, на океанах составляет 1024 мм (или 3,69·10 17 кг воды), на материках – 700 мм (или 1,04·10 17 кг воды). Количество осадков на материках значительно превышает испарение (на 254 мм, или на 0,38·10 17 кг воды). Это означает, что значительная масса водяного пара поступает на материки с океанов. С другой стороны, не испарившаяся на материках вода (254 мм) стекает в реки и далее в океан. На океанах испарение превышает (на 103 мм) количество осадков. Разность восполняется стоков воды с океанов.

Испарение и испаряемость

В атмосферу вода попадает в результате испарения с поверхности Земли (водоемов, почвы); она выделяется живыми организмами в процессе жизнедеятельности (дыхание, обмен веществ, транспирация у растений); она является побочным продуктом вулканической деятельности, промышленного производства и окисления различных веществ.

Испарение (обычно воды) – поступление водяного пара в атмосферу вследствие отрыва наиболее быстродвижущихся молекул с поверхности воды, снега, льда, влажной почвы, капель и кристаллов в атмосфере.

Испарение с поверхности земли называется физическим испарением . Физическое испарение и транспирация вместе – суммарное испарение .

Суть процесса испарения заключается в отрыве отдельных молекул воды от водной поверхности или от влажной почвы и переходе воздух в качестве молекул водяного пара. Содержащийся в атмосфере пар конденсируется при охлаждении воздуха. Сгущение водяного пара также может идти путем сублимации (процесс непосредственного перехода вещества из газообразного в твердое, минуя жидкое). Из атмосферы вода удаляется при выпадении осадков.

Молекулы жидкости всегда находятся в движении, причем некоторые из них могут прорываться через поверхность жидкости и уходить в воздух. Отрываются те молекулы, скорость которых выше скорости движения молекул при данной температуре и достаточна для преодоления сил сцепления (молекулярного притяжения). С ростом температуры количество отрывающихся молекул растет. Молекулы пара могут возвращаться из воздуха в жидкость. Когда температура жидкости повышается, количество покидающих ее молекул становится больше количества возвращающихся, т.е. происходит испарение жидкости. Понижение температуры замедляет переход молекул жидкости в воздух и вызывает конденсацию пара. Если водяной пар поступает в воздух, то он, как и все другие газы, создает определенное давление. По мере того, как молекулы воды переходят в воздух, давление пара в воздухе увеличивается. Когда достигается состояние подвижного равновесия (количество молекул, покидающих жидкость, равно количеству возвращающихся молекул), то испарение прекращается. Такое состояние называется насыщением , водяной пар в таком состоянии – насыщающим , а воздух насыщенным . Давление водяного пара в состоянии насыщения называется давлением насыщенного водяного пара (Е), или упругостью насыщения, или максимальной упругостью.

Пока состояние насыщения не достигнуто, то идет процесс испарения воды, при этом упругость водяного пара (е) над жидкостью меньше максимальной упругости: е<Е.

Если количество возвращающихся молекул воды больше количества вылетающих, то имеет место процесс конденсации или сублимации (надо льдом): е>Е.

Давление насыщенного водяного пара зависит от

· температуры воздуха,

· от характера поверхности (жидкость, лед),

· от формы этой поверхности,

· солености воды.

Большая часть водяного пара поступает в атмосферу с поверхности морей и океанов. Особенно это относится к влажным, тропическим районам Земли. В тропиках испарение превышает количество осадков. В высоких широтах имеет место обратное соотношение. В целом же по всему земному шару количество осадков приблизительно равно испарению.

Испарение регулируется некоторыми физическими свойствами местности, в частности температурой поверхности воды и крупных водоемов, преобладающими здесь скоростями ветра. Когда над поверхностью воды дует ветер, то он относит в сторону увлажнившийся воздух и заменяет его свежим, более сухим (т.е. к молекулярной диффузии добавляется адвекция и турбулентная диффузия). Чем сильнее ветер, тем быстрее сменяется воздух и тем интенсивнее испарение.

Испарение можно характеризовать скоростью протекания процесса. Скорость испарения (V) выражается в миллиметрах слоя воды, испарившейся за единицу времени с единицы поверхности. Она зависит от дефицита насыщения, атмосферного давления и скорости ветра.

Испарение в реальных условиях измерить трудно. Для измерения испарения применяют испарители различных конструкций или испарительные бассейны (с площадью поперечного сечения 20 м 2 или 100 м 2 и глубиной 2 м). Но значения, полученные по испарителям, нельзя приравнивать к испарению с реальной физической поверхности. Поэтому прибегают к расчетным методам: испарение с поверхности суши рассчитывается исходя из данных по осадкам, стоку и влагосодержанию почвы, которые легче получить путем измерений. Испарение с поверхности моря можно вычислить по формулам, близким к суммарному уравнению.

Различают фактическое испарение и испаряемость.

Испаряемость – потенциально возможное испарение в данной местности при существующих в ней атмосферных условиях.

При этом подразумевают либо испарение с поверхности воды в испарителе; испарение с открытой водной поверхности крупного водоема (естественного пресноводного); испарение с поверхности избыточно увлажненной почвы. Испаряемость выражается в миллиметрах слоя испарившейся воды за единицу времени.

В полярных областях испаряемость мала : около 80 мм/год. Это связано с тем, что здесь наблюдаются низкие температуры испаряющей поверхности, а давление насыщенного водяного пара Е S и фактическое давление водяного пара малы и близки между собой, поэтому и разность (Е S – е) невелика.

В умеренных широтах испаряемость изменяется в широких пределах и имеет тенденцию к росту при продвижении с северо-запада на юго-восток материка, что объясняется ростом в этом же направлении дефицита насыщения. Наименьшие значения в этом поясе Евразии наблюдаются на северо-западе материка: 400–450 мм, наибольшие (до 1300–1800 мм) в Центральной Азии.

В тропиках испаряемость мала на побережьях и резко увеличивается во внутриматериковых частях до 2500–3000 мм.

У экватора испаряемость относительно низка: не превышает 100 мм по причине небольшой величины дефицита насыщения.

Фактическое испарение на океанах совпадает с испаряемостью. На суше оно существенно меньше, главным образом, зависит от режима увлажнения. Разность между испаряемостью и осадками можно использовать для расчета дефицита увлажнения воздуха.

Испарение и испаряемость. Географическое распределение испарения и испаряемости (анализ карт испарения и испаряемости)

ИСПАРЕНИЕ (русск.) -- переход вещества из жидкого или твердого состояния в газообразное -- в пар. В природе водяной пар поступает в атмосферу с поверхности воды, почвы, растительности, льда, снега. Испарение зависит от температуры и влажности воздуха, от испаряющей поверхности и скорости ветра.

ИСПАРЯЕМОСТЬ -- максимально возможное испарение при данных метеорологических условиях с достаточно увлажненной подстилающей поверхности, то есть в условиях неограниченного запаса влаги. Испаряемость выражается в миллиметрах слоя испарившейся воды и сильно отличается от фактического испарения, особенно в пустыне, где испарение близко к нулю, а испаряемость -- 2000 мм в год и более.

На испарение затрачивается тепло, в результате чего температура испаряющей поверхности понижается. Это имеет большое значение для растений, особенно в экваториально-тропических широтах, где испарение уменьшает их перегрев. Южное океаническое полушарие холоднее северного отчасти по этой же причине.

Суточный и годовой ход испарения тесно связан с температурой воздуха. Величины испаряемости в полярных широтах около 60-80 мм с максимальными значением 100-120 мм обусловлены низкими температурами воздуха и, как следствие, близкими значениями E1 (фактической упругости водяного пара) и е (максимальной упругости).

В полярных областях, при низких температурах испаряющей поверхности, как упругость насыщения Еs так и фактическая упругость е малы и близки друг к другу. Поэтому разность (Es - е) мала, и вместе с ней мала испаряемость. На Шпицбергене она только 80 мм в год, в Англии около 400 мм, в Средней Европе около 450 мм. На Европейской территории России испаряемость растет с северо-запада на юго-восток вместе с ростом дефицита влажности. В Ленинграде она 320 мм в год, в Москве 420 мм, в Луганске 740 мм. В Средней Азии с ее высокими летними температурами и большим дефицитом влажности испаряемость значительно выше: 1340 мм в Ташкенте и 1800 мм в Нукусе.

В тропиках испаряемость сравнительно невелика на побережьях и резко возрастает внутри материков, особенно в пустынях. Так, на Атлантическом побережье Сахары годовая испаряемость 600--700 мм, а на расстоянии 500 км от берега -- 3000 мм. В наиболее засушливых районах Аравии и пустынь по Колорадо она выше 3000 мм. Только в Южной Америке нет областей с годовой испаряемостью более 2500 мм.

У экватора, где дефицит влажности мал, испаряемость относительно низка: 700--1000 мм. В береговых пустынях Перу, Чили и Южной Африки годовая испаряемость также не более 600--800 мм.

Географическое распределение фактического испарения в широтами следующий:

На широте 0-10 ° испарения на суше составляет 112 см, океане - 110 см.

На широте 20-30 ° испарения на суше составляет 37 см, океане - 130 см.

На широте 40-50 ° испарения на суше составляет 37 см, океане - 70 см.

На широте 60-90 ° испарения на суше составляет 8 см, океане - 15 см.

Loading...Loading...