Еще более глубокое изучение вопроса приведет нас к такому понятию, как кривизна пространства . Не вдаваясь в подробности, обратим внимание лишь на то, что поверхность может быть искривлена в каждой точке двумя качественно различными способами. В одном случае поверхность напоминает часть эллипсоида, и кривизна считается положительной. В другом случае поверхность похожа на седло, и ее кривизна отрицательна. Псевдосфера, как видно на ее изображении (а значит, и плоскость Лобачевского), имеет отрицательную кривизну, причем оказывается, что эта кривизна постоянна (не зависит от точки поверхности). Это, кстати, проясняет происхождение названия «псевдосфера»: обычная сфера является поверхностью с постоянной положительной кривизной.
Геометрия Лобачевского, созданная в XIX веке, была важнейшей ступенью к созданию области математики, которая сейчас называется дифференциальной геометрией . Она занимается изучением произвольных искривленных пространств, а ее математический аппарат является фундаментом такой важной области современной физики, как общая теория относительности (ОТО). Дело в том, что, согласно ОТО, пространство-время, в котором мы живем, обладает кривизной, причем кривизна пространства соответствует наличию в этой точке пространства гравитационного поля.
ОТО подверглась многочисленным экспериментальным проверкам (см.: Столетие ОТО, или Юбилей Первой ноябрьской революции , «Элементы», 25.11.2015), а поправки, связанные с ней, приходится учитывать для точной спутниковой навигации. Кроме того, ей описывается физика массивных объектов, таких как обычные и нейтронные звезды, сверхновые и черные дыры (список можно продолжать). Наконец, ОТО лежит в основе современной науки о Вселенной - космологии .
Согласно здравому смыслу, а также всем имеющимся наблюдательным данным, Вселенная на больших масштабах однородна и изотропна. Это в любом случае означает, что она является пространством постоянной пространственной кривизны. В связи с этим с самых первых лет космологии рассматривались три возможности : плоская Вселенная, Вселенная положительной кривизны («сферическая Вселенная») и Вселенная отрицательной кривизны («Вселенная Лобачевского»). На данный момент, правда, считается, что кривизна Вселенной нулевая (в пределах современной точности измерений). Это находит объяснение в современной теории инфляции . Согласно последней, Вселенная в начальной стадии своей эволюции испытывала очень быстрое расширение и в результате увеличилась во много раз (это и называется инфляцией). Вполне возможно, что до инфляции Вселенная была сферической, «Вселенной Лобачевского» или имела какую-то другую сложную геометрию. Однако расширение привело к тому, что сейчас наблюдениям доступна лишь очень малая часть всей Вселенной, и ее геометрия должна быть неотличима от плоской.
Плоскость Лобачевского
Геометрия Лобачевского (гиперболическая геометрия ) - одна из неевклидовых геометрий , геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия , за исключением аксиомы о параллельных , которая заменяется на аксиому о параллельных Лобачевского .
Евклидова аксиома о параллельных гласит:
через точку, не лежащую на данной прямой, проходит только одна прямая, лежащая с данной прямой в одной плоскости и не пересекающая её.
В геометрии Лобачевского, вместо неё принимается следующая аксиома:
через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие её.
Геометрия Лобачевского имеет обширные применения как в математике, так и в физике. Историческое её значение состоит в том, что её построением Лобачевский показал возможность геометрии, отличной от евклидовой, что знаменовало новую эпоху в развитии геометрии и математики вообще.
История
Попытки доказательства пятого постулата
Отправным пунктом геометрии Лобачевского послужил V постулат Евклида - аксиома, эквивалентная аксиоме о параллельных . Он входил в список постулатов в «Началах» Евклида). Относительная сложность и неинтуитивность его формулировки вызывала ощущение его вторичности и порождала попытки вывести его из остальных постулатов Евклида.
Среди пытавшихся доказать были следующие учёные:
- древнегреческие математики Птолемей (II в.), Прокл (V в.) (основывался на предположении о конечности расстояния между двумя параллельными),
- Ибн аль-Хайсам из Ирака (конец - начало вв.) (основывался на предположении, что конец движущегося перпендикуляра к прямой описывает прямую линию),
- иранский математики Омар Хайям (2-я половина - начало XII вв.) и Насир ад-Дин ат-Туси (XIII в.) (основывались на предположении, что две сходящиеся прямые не могут при продолжении стать расходящимися без пересечения),
- немецкий математик Клавиус (),
- итальянские математики
- Катальди (впервые в 1603 году напечатал работу, целиком посвященную вопросу о параллельных),
- английский математик Валлис ( , опубликовано в ) (основывался на предположении, что для всякой фигуры существует ей подобная, но не равная фигура),
- французский математик Лежандр () (основывался на допущении, что через каждую точку внутри острого угла можно провести прямую, пересекающую обе стороны угла; у него также были другие попытки доказательства).
При этих попытках доказательства пятого постулата математики вводили некоторое новое утверждение, казавшееся им более очевидным.
Были предприняты попытки использовать доказательство от противного:
- итальянский математик Саккери () (сформулировав противоречащее постулату утверждение, он вывел ряд следствий и, ошибочно признав часть из них противоречивыми, он счёл постулат доказанным),
- немецкий математик Ламберт (около , опубликовано в ) (проведя исследования , он признал, что не смог обнаружить в построенной им системе противоречия).
Наконец, стало возникать понимание о том, что возможно построение теории, основанной на противоположном постулате:
- немецкие математики Ф. Швейкарт () и Тауринус () (однако они не осознали, что такая теория будет логически столь же стройной).
Создание неевклидовой геометрии
Лобачевский в работе «О началах геометрии» (), первой его печатной работе по неевклидовой геометрии, ясно заявил, что V постулат не может быть доказан на основе других посылок евклидовой геометрии, и что допущение постулата, противоположного постулату Евклида, позволяет построить геометрию столь же содержательную, как и евклидова, и свободную от противоречий.
Одновременно и независимо к аналогичным выводам пришёл Янош Бойяи , а Карл Фридрих Гаусс пришёл к таким выводам ещё раньше. Однако труды Бойяи не привлекли внимания, и он вскоре оставил эту тему, а Гаусс вообще воздерживался от публикаций, и о его взглядах можно судить лишь по нескольким письмам и дневниковым записям. Например, в письме 1846 года астроному Г. Х. Шумахеру Гаусс так отзывается о работе Лобачевского:
Это сочинение содержит в себе основания той геометрии, которая должна была бы иметь место и притом составляла бы строго последовательное целое, если бы евклидова геометрия не была бы истинной… Лобачевский называет ее «воображаемой геометрией»; Вы знаете, что уже 54 года (с 1792 г.) я разделяю те же взгляды с некоторым развитием их, о котором не хочу здесь упоминать; таким образом, я не нашёл для себя в сочинении Лобачевского ничего фактически нового. Но в развитии предмета автор следовал не по тому пути, по которому шёл я сам; оно выполнено Лобачевским мастерски в истинно геометрическом духе. Я считаю себя обязанным обратить Ваше внимание на это сочинение, которое, наверное, доставит Вам совершенно исключительное наслаждение.
В итоге Лобачевский выступил как первый наиболее яркий и последовательный пропагандист этой теории.
Хотя геометрия Лобачевского развивалась как умозрительная теория и сам Лобачевский называл её «воображаемой геометрией», тем не менее именно Лобачевский рассматривал её не как игру ума, а как возможную теорию пространственных отношений. Однако доказательство её непротиворечивости было дано позже, когда были указаны её интерпретации и тем полностью решён вопрос о её реальном смысле, логической непротиворечивости.
Утверждение геометрии Лобачевского
угол - ещё сложнее.
Модель Пуанкаре
Содержание геометрии Лобачевского
Пучок параллельных прямых в геометрии Лобачевскоого
Лобачевский строил свою геометрию, отправляясь от основных геометрических понятий и своей аксиомы, и доказывал теоремы геометрическим методом, подобно тому, как это делается в геометрии Евклида. Основой служила теория параллельных линий, так как именно здесь начинается отличие геометрии Лобачевского от геометрии Евклида. Все теоремы, не зависящие от аксиомы о параллельных, общи обеим геометриям и образуют так называемую абсолютную геометрию , к которой относятся, например, теоремы о равенстве треугольников. Вслед за теорией параллельных строились другие разделы, включая тригонометрию и начала аналитической и дифференциальной геометрии.
Приведём (в современных обозначениях) несколько фактов геометрии Лобачевского, отличающих её от геометрии Евклида и установленных самим Лобачевским.
Через точку P , не лежащую на данной прямой R (см. рисунок), проходит бесконечно много прямых, не пересекающих R и находящихся с ней в одной плоскости; среди них есть две крайние x , y , которые и называются параллельными прямой R в смысле Лобачевского. В моделях Клейна (Пуанкаре) они изображаются хордами (дугами окружностей), имеющими с хордой (дугой) R общий конец (который по определению модели исключается, так что эти прямые не имеют общих точек).
Угол между перпендикуляром PB из P на R и каждой из параллельных (называемый углом параллельности ) по мере удаления точки P от прямой убывает от 90° до 0° (в модели Пуанкаре углы в обычном смысле совпадают с углами в смысле Лобачевского, и потому на ней этот факт можно видеть непосредственно). Параллель x с одной стороны (а y с противоположной) асимптотически приближается к а , а с другой - бесконечно от неё удаляется (в моделях расстояния определяются сложно, и потому этот факт непосредственно не виден).
Для точки, находящейся от заданной прямой на расстоянии PB = a (см. рисунок), Лобачевский дал формулу для угла параллельности П(a) :
Здесь q - некоторая постоянная, связанная с кривизной пространства Лобачевского. Она может служить абсолютной единицей длины аналогично тому, как в сферической геометрии особое положение занимает радиус сферы.
Если прямые имеют общий перпендикуляр, то они бесконечно расходятся в обе стороны от него. К любой из них можно восстановить перпендикуляры, которые не достигают другой прямой.
В геометрии Лобачевского не существует подобных, но неравных треугольников; треугольники равны, если их углы равны.
Сумма углов всякого треугольника меньше π и может быть сколь угодно близкой к нулю. Это непосредственно видно на модели Пуанкаре. Разность δ = π − (α + β + γ) , где α , β , γ - углы треугольника, пропорциональна его площади:
Из формулы видно, что существует максимальная площадь треугольника, и это конечное число: πq 2 .
Линия равных расстояний от прямой не есть прямая, а особая кривая, называемая эквидистантой , или гиперциклом .
Предел окружностей бесконечно увеличивающегося радиуса не есть прямая, а особая кривая, называемая предельной окружностью , или орициклом .
Предел сфер бесконечно увеличивающегося радиуса не есть плоскость, а особая поверхность - предельная сфера, или орисфера ; замечательно, что на ней имеет место евклидова геометрия. Это служило Лобачевскому основой для вывода формул тригонометрии.
Длина окружности не пропорциональна радиусу, а растёт быстрее. В частности, в геометрии Лобачевского число π не может быть определено как отношение длины окружности к её диаметру.
Чем меньше область в пространстве или на плоскости Лобачевского, тем меньше геометрические соотношения в этой области отличаются от соотношений евклидовой геометрии. Можно сказать, что в бесконечно малой области имеет место евклидова геометрия. Например, чем меньше треугольник, тем меньше сумма его углов отличается от π ; чем меньше окружность, тем меньше отношение её длины к радиусу отличается от 2π , и т. п. Уменьшение области формально равносильно увеличению единицы длины, поэтому при безграничном увеличении единицы длины формулы геометрии Лобачевского переходят в формулы евклидовой геометрии. Евклидова геометрия есть в этом смысле «предельный» случай геометрии Лобачевского.
Приложения
- Сам Лобачевский применил свою геометрию к вычислению определённых интегралов .
- В теории функций комплексного переменного геометрия Лобачевского помогла построить теорию автоморфных функций . Связь с геометрией Лобачевского была здесь отправным пунктом исследований Пуанкаре , который писал, что «неевклидова геометрия есть ключ к решению всей задачи».
- Геометрия Лобачевского находит применение также в теории чисел , в её геометрических методах, объединённых под названием «геометрия чисел ».
- Была установлена тесная связь геометрии Лобачевского с кинематикой специальной (частной) теории относительности . Эта связь основана на том, что равенство, выражающее закон распространения света
- Замечательное приложение геометрия Лобачевского нашла в общей теории относительности . Если считать распределение масс материи во Вселенной равномерным (это приближение в космических масштабах допустимо), то оказывается возможным, что при определённых условиях пространство имеет геометрию Лобачевского. Таким образом, предположение Лобачевского о его геометрии как возможной теории реального пространства оправдалось.
- При помощи модели Клейна, даётся очень простое и короткое доказательство
7 февраля 1832 года Николай Лобачевский представил на суд коллег свой первый труд по неевклидовой геометрии. Этот день стал началом переворота в математике, а работа Лобачевского - первым шагом к теории относительности Эйнштейна. Сегодня "РГ" собрала пятерку самых распространенных заблуждений о теории Лобачевского, бытующих среди далеких от математической науки людей
Миф первый. Геометрия Лобачевского не имеет ничего общего с Евклидовой.
На самом деле геометрия Лобачевского не слишком сильно отличается от привычной нам Евклидовой. Дело в том, что из пяти постулатов Евклида четыре первых Лобачевский оставил без изменения. То есть он согласен с Евклидом в том, что между двумя любыми точками можно провести прямую, что ее всегда можно продолжить до бесконечности, что из любого центра можно провести окружность с любым радиусом, и что все прямые углы равны между собой. Не согласился Лобачевский только с пятым, наиболее сомнительным с его точки зрения постулатом Евклида. Звучит его формулировка чрезвычайно мудрено, но если переводить ее на понятный простому человеку язык, то получается, что, по мнению Евклида, две непараллельные прямые обязательно пересекутся. Лобачевский сумел доказать ложность этого посыла.
Миф второй. В теории Лобачевского параллельные прямые пересекаются
Это не так. На самом деле пятый постулат Лобачевского звучит так: "На плоскости через точку, не лежащую на данной прямой, проходит более чем одна прямая, не пересекающая данную". Иными словами, для одной прямой можно провести как минимум две прямые через одну точку, которые не будут ее пересекать. То есть в этом постулате Лобачевского речи о параллельных прямых вообще не идет! Говорится лишь о существовании нескольких непересекающихся прямых на одной плоскости. Таким образом, предположение о пересечении параллельных прямых родилось из-за банального незнания сути теории великого российского математика.
Миф третий. Геометрия Лобачевского - единственная неевклидова геометрия
Неевклидовы геометрии - это целый пласт теорий в математике, где основой является отличный от Евклидова пятый постулат. Лобачевский, в отличие от Евклида, к примеру, описывает гиперболическое пространство. Существует еще теория, описывающая сферическое пространство - это геометрия Римана. Вот в ней-то как раз параллельные прямые пересекаются. Классический тому пример из школьной программы - меридианы на глобусе. Если посмотреть на лекало глобуса, то окажется, что все меридианы параллельны. Меж тем, стоит нанести лекало на сферу, как мы видим, что все ранее параллельные меридианы сходятся в двух точках - у полюсов. Вместе теории Евклида, Лобачевского и Римана называют "три великих геометрии".
Миф четвертый. Геометрия Лобачевского не применима в реальной жизни
Напротив, современная наука приходит к пониманию, что Евклидова геометрия - лишь частный случай геометрии Лобачевского, и что в реальный мир точнее описывается именно формулами русского ученого. Сильнейшим толчком к дальнейшему развитию геометрии Лобачевского стала теория относительности Альберта Эйнштейна, которая показала, что само пространство нашей Вселенной не является линейным, а представляет собой гиперболическую сферу. Между тем, сам Лобачевский, несмотря на то, что всю жизнь работал над развитием своей теории, называл ее "воображаемой геометрией".
Миф пятый. Лобачевский первым создал неевклидову геометрию
Это не совсем так. Параллельно с ним и независимо от него к подобным выводам пришли венгерский математик Янош Бойяи и знаменитый немецкий ученый Карл Фридрих Гаусс. Однако труды Яноша не были замечены широкой публикой, а Карл Гаусс и вовсе предпочел не издаваться. Поэтому именно наш ученый считается первопроходцем в этой теории. Однако существует несколько парадоксальная точка зрения, что первым неевклидову геометрию придумал сам Евклид. Дело в том, что он самокритично считал свой пятый постулат не очевидным, поэтому большую часть из своих теорем он доказал, не прибегая к нему.
Лобачевского геометрия - геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы о параллельных, которая заменяется на аксиому о параллельных Лобачевского. Евклидова аксиома о параллельных гласит: через точку, не лежащую на данной прямой, проходит только одна прямая, лежащая с данной прямой в одной плоскости и не пересекающая её. В Лобачевского геометрия вместо неё принимается следующая аксиома: через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие её. Казалось бы, эта аксиома противоречит чрезвычайно привычным представлениям. Тем не менее как эта аксиома, так и вся Лобачевского геометрия имеет вполне реальный смысл. Лобачевского геометрия была создана и развита Н. И. Лобачевским, который впервые сообщил о ней в 1826. Лобачевского геометрия называется неевклидовой геометрией, хотя обычно термину «неевклидова геометрия» придают более широкий смысл, включая сюда и др. теории, возникшие вслед за Лобачевского геометрия и также основанные на изменении основных посылок евклидовой геометрии. Лобачевского геометрия называется специально гиперболической неевклидовой геометрией (в противоположность эллиптической геометрии Римана).
Лобачевского геометрия представляет теорию, богатую содержанием и имеющую применение как в математике, так и в физике. Историческое её значение состоит в том, что её построением Лобачевский показал возможность геометрии, отличной от евклидовой, что знаменовало новую эпоху в развитии геометрии и математики вообще (см. Геометрия). С современной точки зрения можно дать, например, следующее определение Лобачевского геометрия на плоскости: она есть не что иное, как геометрия внутри круга на обычной (евклидовой) плоскости, лишь выраженная особым образом. Именно, будем рассматривать круг на обычной плоскости (рис. 1) и внутренность его, т. е. круг, за исключением ограничивающей его окружности, назовем «плоскостью». Точкой «плоскости» будет точка внутри круга. «Прямой» будем называть любую хорду (например, а, b, b`, MN) (с исключенными концами, т. к. окружность круга исключена из «плоскости»). «Движением» назовем любое преобразование круга самого в себя, которое переводит хорды в хорды.
Соответственно, равными называются фигуры внутри круга, переводящиеся одна в другую такими преобразованиями. Тогда оказывается, что любой геометрический факт, описанный на таком языке, представляет теорему или аксиому Лобачевского геометрия Иными словами, всякое утверждение Лобачевского геометрия на плоскости есть не что иное, как утверждение евклидовой геометрии, относящееся к фигурам внутри круга, лишь пересказанное в указанных терминах. Евклидова аксиома о параллельных здесь явно не выполняется, т. к. через точку О, не лежащую на данной хорде а (т. е. «прямой»), проходит сколько угодно не пересекающих её хорд («прямых») (например, b, b`). Аналогично, Лобачевского геометрия в пространстве может быть определена как геометрия внутри шара, выраженная в соответствующих терминах («прямые» - хорды, «плоскости» - плоские сечения внутренности шара, «равные» фигуры - те, которые переводятся одна в другую преобразованиями, переводящими шар сам в себя и хорды в хорды). Таким образом, Лобачевского геометрия имеет совершенно реальный смысл и столь же непротиворечива, как геометрия Евклида. Описание одних и тех же фактов в разных терминах или, напротив, описание разных фактов в одних и тех же терминах представляет характерную черту математики. Она ясно выступает, например, когда одна и та же линия задаётся в разных координатах разными уравнениями или, напротив, одно и то же уравнение в разных координатах представляет различные линии.
Возникновение геометрии Лобачевского
Источником Лобачевского геометрия послужил вопрос об аксиоме о параллельных, которая известна также как V постулат Евклида (под этим номером утверждение, эквивалентное приведённой выше аксиоме о параллельных, фигурирует в списке постулатов в «Началах» Евклида). Этот постулат, ввиду его сложности в сравнении с другими, вызвал попытки дать его доказательство на основании остальных постулатов.
Вот неполный перечень учёных, занимавшихся доказательством V постулата до 19 в.: древнегреческий математики Птолемей (2 в.), Прокл (5 в.) (доказательство Прокла основано на предположении о конечности расстояния между двумя параллельными), Ибн аль-Хайсам из Ирака (конец 10 - начало 11 вв.) (Ибн аль-Хайсам пытался доказать V постулат, исходя из предположения, что конец движущегося перпендикуляра к прямой описывает прямую линию), таджикский математик Омар Хайям (2-я половина 11 - начало 12 вв.), азербайджанский математик Насирэддин Туей (13 в.) (Хайям и Насирэддин при доказательстве V постулата исходили из предположения, что две сходящиеся прямые не могут при продолжении стать расходящимися без пересечения), немецкий математик К. Клавий (Шлюссель, 1574), итальянские математики П. Катальди (впервые в 1603 напечатавший работу, целиком посвященную вопросу о параллельных), Дж. Борелли (1658), Дж. Витале (1680), английский математик Дж. Валлис (1663, опубликовано в 1693) (Валлис основывает доказательство V постулата на предположении, что для всякой фигуры существует ей подобная, но не равная фигура). Доказательства перечисленных выше геометров сводились к замене V постулата др. предположением, казавшимся более очевидным.
Итальянский математик Дж. Саккери (1733) сделал попытку доказать V постулат от противного. Приняв предложение, противоречащее постулату Евклида, Саккери развил из него довольно обширные следствия. Ошибочно признав некоторые из этих следствий приводящими к противоречиям, Саккери заключил, что постулат Евклида доказан. Немецкий математик И. Ламберт (около 1766, опубликовано в 1786) предпринял аналогичные исследования, однако он не повторил ошибки Саккери, а признал своё бессилие обнаружить в построенной им системе логическое противоречие. Попытки доказательства постулата предпринимались и в 19 в. Здесь следует отметить работы французского математика А. Лежандра; одно из его доказательств (1800) основано на допущении, что через каждую точку внутри острого угла можно провести прямую, пересекающую обе стороны угла, т. е., как и все его предшественники, он заменил постулат др. допущением. Довольно близко к построению Лобачевского геометрия подошли немецкие математики Ф. Швейкарт (1818) и Ф. Тауринус (1825), однако ясно выраженной мысли о том, что намечаемая ими теория будет логически столь же совершенна, как и геометрия Евклида, они не имели.
Вопрос о V постулате Евклида, занимавший геометров более двух тысячелетий, был решен Лобачевским. Это решение сводится к тому, что постулат не может быть доказан на основе др. посылок евклидовой геометрии и что допущение постулата, противоположного постулату Евклида, позволяет построить геометрию столь же содержательную, как и евклидова, и свободную от противоречий. Лобачевский сделал об этом сообщение в 1826, а в 1829-30 напечатал работу «О началах геометрии» с изложением своей теории. В 1832 была опубликована работа венгерского математика Я. Больяй аналогичного содержания. Как выяснилось впоследствии, немецкий математик К. Ф. Гаусс также пришёл к мысли о возможности существования непротиворечивой неевклидовой геометрии, но скрывал её, опасаясь быть непонятым. Хотя Лобачевского геометрия развивалась как умозрительная теория и сам Лобачевский называл её «воображаемой геометрией», тем не менее именно Лобачевский рассматривал её не как игру ума, а как возможную теорию пространственных отношений. Однако доказательство её непротиворечивости было дано позже, когда были указаны её интерпретации и тем полностью решен вопрос о её реальном смысле, логической непротиворечивости.
Лобачевского геометрия изучает свойства «плоскости Лобачевского» (в планиметрии) и «пространства Лобачевского» (в стереометрии). Плоскость Лобачевского - это плоскость (множество точек), в которой определены прямые линии, а также движения фигур (вместе с тем - расстояния, углы и пр.), подчиняющиеся всем аксиомам евклидовой геометрии, за исключением аксиомы о параллельных, которая заменяется указанной выше аксиомой Лобачевского. Сходным образом определяется пространство Лобачевского. Задача выяснения реального смысла Лобачевского геометрия состояла в нахождении моделей плоскости и пространства Лобачевского, т. е. в нахождении таких объектов, в которых реализовались бы соответствующим образом истолкованные положения планиметрии и стереометрии Лобачевского геометрии.
Приведём несколько фактов геометрии Лобачевского, отличающих её от геометрии Евклида и установленных самим Лобачевским
1) В Лобачевского геометрия не существует подобных, но неравных треугольников; треугольники равны, если их углы равны. Поэтому существует абсолютная единица длины, т. е. отрезок, выделенный по своим свойствам, подобно тому как прямой угол выделен своими свойствами. Таким отрезком может служить, например, сторона правильного треугольника с данной суммой углов.
2) Сумма углов всякого треугольника меньше p и может быть сколь угодно близкой к нулю. Это непосредственно видно на модели Пуанкаре. Разность p - (a + b + g), где a, b, g - углы треугольника, пропорциональна его площади.
3) Через точку О, не лежащую на данной прямой а, проходит бесконечно много прямых, не пересекающих а и находящихся с ней в одной плоскости; среди них есть две крайние b, b`, которые и называются параллельными прямой а в смысле Лобачевского. В моделях Клейна (Пуанкаре) они изображаются хордами (дугами окружностей), имеющими с хордой (дугой) а общий конец (который по определению модели исключается, так что эти прямые не имеют общих точек) (рис. 1,3). Угол ее между прямой b (или b`) и перпендикуляром из О на а - т. н. угол параллельности - по мере удаления точки О от прямой убывает от 90° до 0° (в модели Пуанкаре углы в обычном смысле совпадают с углами в смысле Лобачевского, и потому на ней этот факт можно видеть непосредственно). Параллель b с одной стороны (а b` с противоположной) асимптотически приближается к а, а с другой - бесконечно от неё удаляется (в моделях расстояния определяются сложно, и потому этот факт непосредственно не виден).
4) Если прямые имеют общий перпендикуляр, то они бесконечно расходятся в обе стороны от него. К любой из них можно восстановить перпендикуляры, которые не достигают другой прямой.
5) Линия равных расстояний от прямой не есть прямая, а особая кривая, называемая эквидистантой, или гиперциклом.
6) Предел окружностей бесконечно увеличивающегося радиуса не есть прямая, а особая кривая, называемая предельной окружностью, или орициклом.
7) Предел сфер бесконечно увеличивающегося радиуса не есть плоскость, а особая поверхность - предельная сфера, или орисфера; замечательно, что на ней имеет место евклидова геометрия. Это служило Лобачевскому основой для вывода формул тригонометрии.
8) Длина окружности не пропорциональна радиусу, а растет быстрее.
9) Чем меньше область в пространстве или на плоскости Лобачевского, тем меньше геометрические соотношения в этой области отличаются от соотношений евклидовой геометрии. Можно сказать, что в бесконечно малой области имеет место евклидова геометрия. Например, чем меньше треугольник, тем меньше сумма его углов отличается от p; чем меньше окружность, тем меньше отношение её длины к радиусу отличается от 2p, и т. п. Уменьшение области формально равносильно увеличению единицы длины, поэтому при безграничном увеличении единицы длины формулы Лобачевского геометрия переходят в формулы евклидовой геометрии. Евклидова геометрия есть в этом смысле «предельный» случай Лобачевского геометрии.
Лобачевского геометрия продолжает разрабатываться многими геометрами; в ней изучаются: решение задач на построение, многогранники, правильные системы фигур, общая теория кривых и поверхностей и т. п. Ряд геометров развивали также механику в пространстве Лобачевского. Эти исследования не нашли непосредственных применений в механике, но дали начало плодотворным геометрическим идеям. В целом Лобачевского геометрия является обширной областью исследования, подобно геометрии Евклида.
теоремы геометрии Лобачевского
1. Основные понятия геометрии Лобачевского
В евклидовой геометрии согласно пятому постулату на плоскости через точку Р, лежащую вне прямой А"А, проходит только одна прямая В"В, не пересекающая А"А. Прямая В"В называется параллелью к А"А. При этом достаточно потребовать, чтобы таких прямых проходило не более одной, так как существование непересекающей прямой может быть доказано путем последовательного проведения прямых PQA"A и PBPQ. В геометрии Лобачевского аксиома параллельности требует, чтобы через точку Р проходило более одной прямой, не пересекающей А "А.
Непересекающие прямые заполняют часть пучка с вершиной Р, лежащую внутри пары вертикальных углов TPU и U"PT" , расположенных симметрично относительно перпендикуляра PQ. Прямые, образующие стороны вертикальных углов, отделяют пересекающие прямые от непересекающих и сами являются тоже непересекающими. Эти граничные прямые называются параллелями в точке Р к прямой А"А соответственно в двух ее направлениях: T"Т параллельно А "А в направлении A"A, a UU" параллельно А "А в направлении А А". Остальные непересекающие прямые называются расходящимися прямыми с А "А .
Угол , 0< 2, параллель к точке Р образует с перпендикуляром PQ, QPT= QPU" =, называется углом параллельности отрезка PQ=a и обозначается через . При а=0 угол =/2; при увеличении а угол уменьшается так, что для каждого заданного, 0<2, существует определенное значение а. Эта зависимость называется функцией Лобачевского :
П (a)=2arctg (),
где к -- некоторая константа, определяющая фиксированный по величине отрезок. Она получила название радиуса кривизны пространства Лобачевского. Подобно сферической геометрии существует бесконечное множество пространств Лобачевского, различающихся величиной к.
Две различные прямые по плоскости образуют пару одного из трех типов.
Пересекающиеся прямые . Расстояние от точек одной прямой до другой прямой неограниченно увеличивается при удалении точки от пересечения прямых. Если прямые не перпендикулярны, то каждая проектируется ортогонально на другую в открытый отрезок конечной величины.
Параллельные прямые . На плоскости через данную точку проходит единственная прямая, параллельная данной прямой в заданном на последней направлении. Параллель в точке Р сохраняет в каждой своей точке свойство быть параллелью той же прямой в том же направлении. Параллелизм обладает взаимностью (если а ||b в определенном направлении, то и b ||а в соответствующем направлении) и транзитивностью (если а ||b и с||b в одном направлении, то а||с в соответствующем направлении). В направлении параллельности параллельные неограниченно сближаются, в противоположном направлении -- неограниченно удаляются (в смысле расстояния от перемещающейся точки одной прямой до другой прямой). Ортогональная проекция одной прямой на другую является открытой полупрямой.
Расходящиеся прямые . Они имеют один общий перпендикуляр, отрезок которого дает минимальное расстояние. По обе стороны от перпендикуляра прямые неограниченно расходятся. Каждая прямая проектируется на другую в открытый отрезок конечной величины.
Трем типам прямых соответствуют на плоскости три типа пучков прямых, каждый из которых покрывает всю плоскость: пучок 1-го рода -- множество всех прямых, проходящих через одну точку (центр пучка); пучок 2-го рода -- множество всех прямых, перпендикулярных к одной прямой (базе пучка); пучок 3-го рода -- множество всех прямых, параллельных одной прямой в заданном направлении, включающее и эту прямую.
Ортогональные траектории прямых этих пучков образуют аналоги окружности евклидовой плоскости: окружность в собственном смысле; эквидистанта , или линия равных расстояний (если не рассматривать базу), которая вогнута в сторону базы; предельная линия , или орицикл , ее можно рассматривать как окружность с бесконечно удаленным центром. Предельные линии конгруэнтны. Они не замкнуты и вогнуты в сторону параллельности. Две предельные линии, порожденные одним пучком,-- концентричны (высекают на прямых пучка равные отрезки). Отношение длин концентрических дуг, заключенных между двумя прямыми пучка, убывает в сторону параллельности как показательная функция расстояния х между дугами:
s" / s=e .
Каждый из аналогов окружности может скользить по самому себе, что порождает три типа однопараметрических движений плоскости: вращение вокруг собственного центра; вращение вокруг идеального центра (одна траектория -- база, остальные -- эквидистанты); вращение вокруг бесконечно удаленного центра (все траектории -- предельные линии).
Вращение аналогов окружностей вокруг прямой порождающего пучка приводит к аналогам сферы: собственно сфере, поверхности равных расстояний и орисфере , или предельной поверхности .
На сфере геометрия больших окружностей -- обычная сферическая геометрия; на поверхности равных расстояний -- геометрия эквидистант, являющаяся планиметрией Лобачевского, но с большим значением к; на предельной поверхности -- евклидова геометрия предельных линий.
Связь между длинами дуг и хорд предельных линий и евклидовы тригонометрические соотношения на предельной поверхности позволяют вывести тригонометрические соотношения на плоскости, то есть тригонометрические формулы для прямолинейных треугольников.
2. Некоторые теоремы геометрии Лобачевского
Теорема 1 . Сумма углов всякого треугольника меньше 2d.
Рассмотрим сначала прямоугольный треугольник ABC (рис. 2). Его стороны а, b, с изображены соответственно в виде отрезка евклидова перпендикуляра к прямой и , дуги евклидовой окружности с центром М и дуги евклидовой окружности с центром N . Угол С --прямой. Угол А равен углу между касательными к окружностям b и с в точке А , или, что то же, углу между радиусами NA и МА этих окружностей. Наконец, B = BNМ.
Построим на отрезке BN как на диаметре евклидову окружность q; она имеет с окружностью с одну только общую точку В , так как ее диаметр является радиусом окружности с . Поэтому точка А лежит вне круга, ограниченного окружностью q, следовательно,
А = MAN < MBN.
Отсюда в силу равенства MBN+В = d имеем:
А +В < d; (1)
поэтому A + B + C < 2d, что и требовалось доказать.
Заметим, что с помощью надлежащего гиперболического движения любой прямоугольный треугольник можно расположить так, чтобы один из его катетов лежал на евклидовом перпендикуляре к прямой и; следовательно, использованный нами метод вывода неравенства (1) применим к любому прямоугольному треугольнику.
Если дан косоугольный треугольник, то разбиваем его одной из высот на два прямоугольных треугольника. Сумма острых углов этих прямоугольных треугольников равна сумме углов данного косоугольного треугольника. Отсюда, принимая во внимание неравенство (1) , заключаем, что теорема справедлива для любого треугольника.
Теорема 2. Сумма углов четырехугольника меньше 4d.
Для доказательства достаточно разбить четырехугольник диагональю на два треугольника.
Теорема 3. Две расходящиеся прямые имеют один и только один общий перпендикуляр.
Пусть одна из данных расходящихся прямых изображается на карте в виде евклидова перпендикуляра р к прямой и в точке М , другая -- в виде евклидовой полуокружности q с центром на и , причем р и q не имеют общих точек (рис. 3). Такое расположение двух расходящихся гиперболических прямых на карте всегда может быть достигнуто с помощью надлежащего гиперболического движения.
Проведем из М евклидову касательную MN к q и опишем из центра М радиусом MN евклидову полуокружность m . Ясно, что m --гиперболическая прямая, пересекающая и р и q под прямым углом. Следовательно, m изображает на карте искомый общий перпендикуляр данных расходящихся прямых.
Две расходящиеся прямые не могут иметь двух общих перпендикуляров, так кaк в этом случае существовал бы четырехугольник с четырьмя прямыми углами, что противоречит теореме 2.
. Теорема 4. Прямоугольная проекция стороны острого угла на другую его сторону есть отрезок (а не полупрямая, как в геометрии Евклида).
Справедливость теоремы очевидна из рис. 4, где отрезок АВ есть прямоугольная проекция стороны АВ острого угла ВАС на его сторону АС.
На том же рисунке дуга DE евклидовой окружности с центром М есть перпендикуляр к гиперболической прямой АС . Этот перпендикуляр не пересекается с наклонной АВ. Следовательно, допущение, что перпендикуляр и наклонная к одной и той же прямой всегда пересекаются, противоречит аксиоме параллельности Лобачевского; оно равносильно аксиоме параллельности Евклида.
Теорема 5. Если три угла треугольника ABC равны соответственно трем углам треугольника А"В"С", то эти треугольники равны.
Допустим обратное и отложим соответственно на лучах АВ и АС отрезки АВ = А"В", АС = А"С". Очевидно, треугольники АВС и А"В"С" равны по двум сторонам и заключенному между ними углу. Точка B не совпадает с В , точка C не совпадает с С , так как в любом из этих случаев имело бы место равенство данных треугольников, что противоречит допущению.
Рассмотрим следующие возможности.
а) Точка В лежит между А и В , точка С -- между А и С (рис. 5); на этом и следующем рисунке гиперболические прямые изображены условно в виде евклидовых прямых). Нетрудно убедиться, что сумма углов четырехугольника ВССВ равна 4d , что невозможно в силу теоремы 2.
6) Точка В лежит между А и В , точка С -- между А и С (рис. 6). Обозначим через D точку пересечения отрезков ВС и BC Так как C = C" и C" = С, то C= С, что невозможно, поскольку угол С -- внешний относительно треугольника CCD.
Аналогично трактуются и другие возможные случаи.
Теорема доказана, поскольку сделанное допущение привело к противоречию.
Из теоремы 5 вытекает, что в геометрии Лобачевского не существует треугольника, подобного данному треугольнику, но не равного ему.