Средняя линия равна половине. Средняя линия треугольника

Средняя линия треугольника

Свойства

  • средняя линия треугольника параллельна третьей стороне и равна её половине.
  • при проведении всех трёх средних линий образуются 4 равных треугольника, подобных (даже гомотетичных) исходному с коэффициентом 1/2.
  • средняя линия отсекает треугольник, который подобен данному, а его площадь равна одной четверти площади исходного треугольника.

Средняя линия четырехугольника

Средняя линия четырехугольника - отрезок, соединяющий середины противолежащих сторон четырехугольника.

Свойства

Первая линия соединяет 2 противоположные стороны. Вторая соединяет 2 другие противоположные стороны. Третья соединяет центры двух диагоналей (не во всех четырехугольниках центры пересекаются)

  • Если в выпуклом четырехугольнике средняя линия образует равные углы с диагоналями четырехугольника, то диагонали равны.
  • Длина средней линии четырехугольника меньше полусуммы двух других сторон или равна ей, если эти стороны параллельны, и только в этом случае.
  • Середины сторон произвольного четырёхугольника - вершины параллелограмма . Его площадь равна половине площади четырехугольника, а его центр лежит на точке пересечения средних линий. Этот параллелограмм называется параллелограммом Вариньона ;
  • Точка пересечения средних линий четырехугольника является их общей серединой и делит пополам отрезок, соединяющий середины диагоналей. Кроме того, она является центроидом вершин четырехугольника.
  • В произвольном четырёхугольнике вектор средней линии равен полусумме векторов оснований.

Средняя линия трапеции

Средняя линия трапеции - отрезок, соединяющий середины боковых сторон этой трапеции. Отрезок, соединяющий середины оснований трапеции, называют второй средней линией трапеции.

Свойства

  • средняя линия параллельна основаниям и равна их полусумме.

См. также

Примечания


Wikimedia Foundation . 2010 .

  • Средняя летальная доза
  • Средняя линия трапеции

Смотреть что такое "Средняя линия" в других словарях:

    СРЕДНЯЯ ЛИНИЯ - (1) трапеции отрезок, соединяющий середины боковых сторон трапеции. Средняя линия трапеции параллельна её основаниям и равна их полусумме; (2) треугольника отрезок, соединяющий середины двух сторон этого треугольника: третья сторона при этом… … Большая политехническая энциклопедия

    СРЕДНЯЯ ЛИНИЯ - треугольника (трапеции) отрезок, соединяющий середины двух сторон треугольника (боковых сторон трапеции) … Большой Энциклопедический словарь

    средняя линия - 24 средняя линия: Воображаемая линия, проходящая через профиль резьбы так, что толщина выступа равна ширине канавки. Источник … Словарь-справочник терминов нормативно-технической документации

    средняя линия - треугольника (трапеции), отрезок, соединяющий середины двух сторон треугольника (боковых сторон трапеции). * * * СРЕДНЯЯ ЛИНИЯ СРЕДНЯЯ ЛИНИЯ треугольника (трапеции), отрезок, соединяющий середины двух сторон треугольника (боковых сторон трапеции) … Энциклопедический словарь

    средняя линия - vidurio linija statusas T sritis Kūno kultūra ir sportas apibrėžtis 3 mm linija, dalijanti teniso stalo paviršių išilgai pusiau. atitikmenys: angl. centre line; midtrack line vok. Mittellinie, f rus. средняя линия … Sporto terminų žodynas

    средняя линия - vidurio linija statusas T sritis Kūno kultūra ir sportas apibrėžtis Linija, dalijanti fechtavimosi kovos takelį į dvi lygias dalis. atitikmenys: angl. centre line; midtrack line vok. Mittellinie, f rus. средняя линия … Sporto terminų žodynas

    средняя линия - vidurio linija statusas T sritis Kūno kultūra ir sportas apibrėžtis Linija, dalijanti sporto aikšt(el)ę pusiau. atitikmenys: angl. centre line; midtrack line vok. Mittellinie, f rus. средняя линия … Sporto terminų žodynas

    Средняя линия - 1) С. л. треугольника, отрезок, соединяющий середины двух сторон треугольника (третью сторону называют основанием). С. л. треугольника параллельна основанию и равна его половине; площади частей треугольника, на которые делит его с. л.,… … Большая советская энциклопедия

    СРЕДНЯЯ ЛИНИЯ - треугольника отрезок, соединяющий середины двух сторон треугольника. Третья сторона треугольника при этом наз. основанием треугольника. С. л. треугольника параллельна основанию и равна половине его длины. Во всяком треугольнике С. л. отсекает от… … Математическая энциклопедия

    СРЕДНЯЯ ЛИНИЯ - треугольника (трапеции), отрезок, соединяющий середины двух сторон треугольника (боковых сторон трапеции) … Естествознание. Энциклопедический словарь

Книги

  • Ручка шариковая "Jotter Luxe K177 West M" (синяя) (1953203) , . Шариковая ручка в подарочной упаковке. Цвет письма: синий. Линия: средняя. Произведено во Франции…

Порой темы, которые объясняют в школе, могут быть не всегда понятны с первого раза. Особенно это касается такого предмета, как математика. Но все становится намного сложнее, когда эта наука начинает подразделяться на две части: алгебру и геометрию.

Каждый ученик может обладать способностью к одному из двух направлений, но особенно в начальных классах важно понять базу и алгебры, и геометрии. В геометрии одной из главных тем принято считать раздел о треугольниках.

Как находить среднюю линию треугольника? Давайте разбираться.

Основные понятия

Для начала чтобы разобраться, как находить среднюю линию треугольника, важно понимать, что же это.

Для проведения средней линии нет ограничений: треугольник может быть любым (равнобедренным, равносторонним, прямоугольным). И все свойства, которые относятся к средней линии, будут действовать.

Средняя линия треугольника является отрезком, соединяющим середины 2-х его сторон. Следовательно, любой треугольник может иметь 3 таких линии.

Свойства

Чтобы знать, как находить среднюю линию треугольника, обозначим ее свойства, которые необходимо запомнить, иначе без них будет невозможным решение задач с необходимостью обозначить длину средней линии, поскольку все полученные данные необходимо обосновать и аргументировать теоремами, аксиомами или свойствами.

Таким образом, чтобы ответить на вопрос: «Как найти среднюю линию треугольника АВС?», достаточно знать одну из сторон треугольника.

Приведем пример

Взгляните на рисунок. На нем представлен треугольник ABC со средней линией DE. Обратим внимание, что она параллельна основанию AC в треугольнике. Следовательно, каким бы ни было значение AC, средняя линия DE будет в два раза меньше. К примеру, AC=20, значит DE=10 и т. д.

Вот такими несложными способами можно понять, как находить среднюю линию треугольника. Запомните ее основные свойства и определение, и тогда у вас никогда не возникнет проблем с нахождением ее значения.

Трапеция — это четырехугольник, имеющий две параллельные стороны, являющиеся основаниями и две не параллельные стороны, являющиеся боковыми сторонами.

Также встречаются такие названия, как равнобокая или равнобочная .

— это трапеция, у которой углы при боковой стороне прямые.

Элементы трапеции

a, b — основания трапеции (a параллельно b ),

m, n — боковые стороны трапеции,

d 1 , d 2 — диагонали трапеции,

h — высота трапеции (отрезок, соединяющий основания и при этом перпендикулярен им),

MN — средняя линия (отрезок, соединяющий середины боковых сторон).

Площадь трапеции

  1. Через полусумму оснований a, b и высоту h : S = \frac{a + b}{2}\cdot h
  2. Через среднюю линию MN и высоту h : S = MN\cdot h
  3. Через диагонали d 1 , d 2 и угол (\sin \varphi ) между ними: S = \frac{d_{1} d_{2} \sin \varphi}{2}

Свойства трапеции

Средняя линия трапеции

Средняя линия параллельна основаниям, равна их полусумме и разделяет каждый отрезок с концами, находящимися на прямых, которые содержат основания, (к примеру, высоту фигуры) пополам:

MN || a, MN || b, MN = \frac{a + b}{2}

Сумма углов трапеции

Сумма углов трапеции , прилежащих к каждой боковой стороне, равна 180^{\circ} :

\alpha + \beta = 180^{\circ}

\gamma + \delta =180^{\circ}

Равновеликие треугольники трапеции

Равновеликими , то есть имеющими равные площади, являются отрезки диагоналей и треугольники AOB и DOC , образованные боковыми сторонами.

Подобие образованных треугольников трапеции

Подобными треугольниками являются AOD и COB , которые образованы своими основаниями и отрезками диагоналей.

\triangle AOD \sim \triangle COB

Коэффициент подобия k находится по формуле:

k = \frac{AD}{BC}

Причем отношение площадей этих треугольников равно k^{2} .

Отношение длин отрезков и оснований

Каждый отрезок, соединяющий основания и проходящий через точку пересечения диагоналей трапеции, поделен этой точкой в отношении:

\frac{OX}{OY} = \frac{BC}{AD}

Это будет являться справедливым и для высоты с самими диагоналями.

В решении планиметрических задач, помимо сторон и углов фигуры, нередко активное участие принимают и другие величины – медианы, высоты, диагонали, биссектрисы и прочие. К их числу относится и средняя линия.
Если исходный многоугольник – трапеция, то что представляет собой его средняя линия? Данный отрезок представляет собой часть прямой, которая пересекает боковые стороны фигуры посередине и располагается параллельно двум другим сторонам – основаниям.

Как найти среднюю линию трапеции через линию средины и основания

Если известны величина верхнего и нижнего оснований, то рассчитать неизвестное поможет выражение:

a, b – основания, l – средняя линия.

Как найти среднюю линию трапеции через площадь

Если в исходных данных присутствует значение площади фигуры, то с помощью данной величины также можно вычислить длину линии средины трапеции. Воспользуемся формулой S = (a+b)/2*h,
S – площадь,
h – высота,
a, b – основания.
Но, так как l = (a+b)/2, то S = l*h, а значит l=S/h.

Как найти среднюю линию трапеции через основание и углы при нем

При наличии длины большего основания фигуры, ее высоты, а также известных градусных мер углов при нем, выражение для нахождения линии средины трапеции будет иметь следующий вид:

l=a – h*(ctgα+ctgβ)/2, при этом
l – искомая величина,
a – большее основание,
α, β – углы при нем,
h – высота фигуры.

Если известно значение меньшего основания (при тех же остальных данных), найти линию средины поможет соотношение:

l=b+h*(ctgα+ctgβ)/2,

l – искомая величина,
b – меньшее основание,
α, β – углы при нем,
h – высота фигуры.

Найти среднюю линию трапеции через высоту, диагонали и углы

Рассмотрим ситуацию, когда в условиях задачи присутствуют значения диагоналей фигуры, углы, которые они образуют, пересекаясь друг с другом, а также высота. Рассчитать среднюю линию можно с помощью выражений:

l=(d1*d2)/2h*sinγ или l=(d1*d2)/2h*sinφ,

l – линия средины,
d1, d2 – диагонали,
φ, γ – углы между ними,
h – высота фигуры.

Как найти среднюю линию трапецииДля равнобедренной фигуры

В случае, если базовая фигура – трапеция равнобедренная, приведенные выше формулы будут иметь следующий вид.

  • При наличии значений оснований трапеции изменений в выражении не произойдет.

l = (a+b)/2, a, b – основания, l – средняя линия.

  • Если известны высота, основание и углы, к нему прилегающие, то:

l=a-h*ctgα,
l=b+h*ctgα,

l – линия средины,
a, b – основания (b < a),
α – углы при нем,
h – высота фигуры.

  • Если известна боковая сторона трапеции и одно из оснований, то определить искомую величину можно, обратившись к выражению:

l=a-√(c*c-h*h),
l=b+√(c*c-h*h),
l – линия средины,
a, b – основания (b < a),
h – высота фигуры.

  • При известных значениях высоты, диагоналей (а они равны между собой) и углах, образованных в результате их пересечения, линию средины можно найти следующим образом:

l=(d*d)/2h*sinγ или l=(d*d)/2h*sinφ,

l – линия средины,
d – диагонали,
φ, γ – углы между ними,
h – высота фигуры.

  • Известны площадь и высота фигуры, тогда:

l=S/h,
S – площадь,
h – высота.

  • Если перпендикуляр-высота неизвестен, его можно определить с помощью определения тригонометрической функции.

h=c*sinα, поэтому
l=S/c*sinα,
l – линия средины,
S – площадь,
c – боковая сторона,
α- угол у основания.

научная работа

1. Свойства средних линий

1. Свойства треугольника:

· при проведении всех трёх средних линий образуются 4 равных треугольника, подобных исходному с коэффициентом 1/2.

· средняя линия параллельна основанию треугольника и равна его половине;

· средняя линия отсекает треугольник, который подобен данному, а его площадь равна одной четверти его площади.

2. Свойства четырёхугольника:

· если в выпуклом четырехугольнике средняя линия образует равные углы с диагоналями четырехугольника, то диагонали равны.

· длина средней линии четырехугольника меньше полусуммы двух других сторон или равна ей, если эти стороны параллельны, и только в этом случае.

· середины сторон произвольного четырёхугольника -- вершины параллелограмма. Его площадь равна половине площади четырехугольника, а его центр лежит на точке пересечения средних линий. Этот параллелограмм называется параллелограммом Вариньона;

· Точка пересечения средних линий четырехугольника является их общей серединой и делит пополам отрезок, соединяющий середины диагоналей. Кроме того, она является центроидом вершин четырехугольника.

3. Свойства трапеции:

· средняя линия параллельна основаниям трапеции и равна их полусумме;

· середины сторон равнобедренной трапеции являются вершинами ромба.

Биномиальные коэффициенты

Числа Cnk обладают рядом замечательных свойств. Эти свойства в конечном счёте выражают различные соотношения между подмножествами данного множества X. Их можно доказывать непосредственно, исходя из формулы (1)...

Биномиальные коэффициенты

1. Сумма коэффициентов разложения (a + b)n равна 2n. Для доказательства достаточно положить a = b = 1. Тогда в правой части разложения бинома мы будем иметь сумму биномиальных коэффициентов, а слева: (1 + 1)n = 2n. 2.Коэффициенты членов...

Ввиду важности и обширности материала, связанного с понятием уравнения, его изучение в современной методике математики организовано в содержательно-методическую линию уравнений и неравенств...

Мультипликативные полугруппы неотрицательных действительных чисел

Пусть S - коммутативная мультипликативная несократимая полугруппа с 1 и без делителей единицы. Такие полугруппы называются целыми, или коническими. Элементы и из S называются взаимно простыми, если НОД(,)=1...

Так как предметом нашего изучения будет средняя величина, скажем вначале о том, как средние определяются в литературе. Сильное определение, включающее несколько условий, состоит в следующем . Определение...

Обобщение классических средних величин

Теперь мы готовы для квази-средних указать упомянутое выше аксиоматическое определение. Будем исходить от частных случаев - простейших средних...

Основные понятия математической статистики

При расчете средней арифметической для интервального вариационного ряда сначала определяют среднюю для каждого интервала, как полусумму верхней и нижней границ, а затем - среднюю всего ряда. Средние...

Простейшие способы обработки опытных данных

Применение вышеназванных способов для описания реальных процессов. При этом нельзя сделать однозначный вывод о том, какой способ наиболее точно описывает тот или иной процесс. Например...

Распределение Пуассона. Аксиомы простейшего потока событий

Теперь рассмотрим случай, когда обе совокупности подчиняются нормальному распределению, но проверка гипотез о равенстве двух генеральных дисперсий закончилась отвержением гипотезы равенства...

Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного артрита

Во многих случаях практики интерес представляет вопрос о том, в какой мере существенно влияние того или иного фактора на рассматриваемый признак. В данном случае фактором является вид инфекции вызвавший реактивный артрит, а признаками СОЭ, СРБ...

Случайные вектора

Ковариация случайных величин и определяется через их совместную плотность вероятности соотношением: . (57.1) Подынтегральная функция в (57.1) неотрицательна для таких, при которых, то есть при, или, . И наоборот, при, или...

Статистические расчеты содержания влаги

Численное интегрирование разными методами

Метод прямоугольников получается при замене подынтегральной функции на константу. В качестве константы можно взять значение функции в любой точке отрезка. Наиболее часто используются значения функции в середине отрезка и на его концах...

Численные методы

1 Чтобы уменьшить погрешность методов левых и правых прямоугольников был предложен метод средних, т.е. метод в котором высота прямоугольника вычисляется в середине отрезка h (Рис. 7). Обращаясь к рисунку легко увидеть...

Loading...Loading...